

Antenne SUD 40 Rue de Pinville CS 40045 34060 MONTPELLIER Cedex 2 Tél : +33 (0)4.11.75.72.53

Diagnostic environnemental préliminaire Secteur du Pic de la Fourque (Ariège) Rapport de synthèse

RAPPORT 2019/094DE BIS - 19MPY36030

Date : 28/06/2019

Siège - 1 Rue Claude Chappe – CS 25198 - 57075 METZ CEDEX 3 # +33 (0)3 87 17 36 60 - Mél : geoderis@geoderis.fr – Internet www.geoderis.fr GROUPEMENT D'INTERET PUBLIC - SIRET : 185 722 949 00020 - APE : 7120B

Diagnostic environnemental préliminaire Secteur du Pic de la Fourque (Ariège) Rapport de synthèse

RAPPORT 2019/094DE BIS – 19MPY36030

Diffusion :

B3S Pôle Après-Mine SUD DREAL Occitanie

GEODERIS

GAY Aurélien CHOQUET Philippe CHARTIER Philippe HANNACHI Nathalie HADADOU Rafik ZORNETTE Nicolas BARANGER Philippe FERFOGLIA Marion

Synthèse réalisée en collaboration avec M. Francis COTTARD, « EnviroFormation »

	Rédaction	Vérification	Approbation
NOM	P. BARANGER M. FERFOGLIA	N. ZORNETTE	R. HADADOU
Visa	ege tutat	3 mette	AF

SOMMAIRE

1	Introduction	5
	1.1 Contexte et origine de la demande	5
	1.2 Déroulement de l'étude	6
	1.2.1 Objectifs et programme	7
	1.2.2 Zone d'étude	8
	1.3 Le secteur minier du Pic de la Fourque dans le cadre de l'inventaire DDIE	.10
2	Phase informative	11
	2.1 Contexte climatique et topographique	.11
	2.2 Contexte hydrologique	.13
	2.3 Contexte hydrogéologique	17
	2.4 Contexte environnemental	17
	2.4.1 Parc Naturel Régional des Pyrénées Ariégeoises	.17
	2.4.2 Zone NATURA 2000	18
	2.4.3 Zone naturelle d'intérêt écologique, faunistique et floristique (ZNIEFF)	.19
	2.4.4 Espèces menacées et/ou protégées	.19
	2.5 Contexte géologique	21
	2.5.1 Contexte géologique régional et local	.21
	2.5.1.1 Contexte géologique régional : la zone axiale des Pyrénées	.21
	2.5.1.2 Contexte géologique local	.22
	2.5.2 Cadre gîtologique et métallogénique	.31
	2.5.2.1 Typologie des minéralisations rencontrées	.31
	2.5.2.2 Le skarn à tungstène du Pic de la Fourque	.33
	2.5.2.3 Minéralisations de Saubé et Hoque-Rabé	.36
	2.5.3 Données issues de l'Inventaire Minier et des travaux de prospection du BR	GΜ
	37	
	37 2.5.3.1 Interprétation des données géochimiques existantes	.37
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 	.37 .53
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 	.37 .53 .53
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé 	.37 .53 .53 .61
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé 2.7 Sources potentielles de pollution 	37 53 53 61 62
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé 2.7 Sources potentielles de pollution 2.7.1 Cas particulier des stériles de creusement et des résidus de traitement 	37 53 61 62 62
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé 2.7 Sources potentielles de pollution 2.7.1 Cas particulier des stériles de creusement et des résidus de traitement 2.7.1.1 Stériles rocheux de creusement et d'exploitation	37 53 61 62 62 63
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique	37 53 61 62 62 63 63
	 37 2.5.3.1 Interprétation des données géochimiques existantes 2.6 Contexte minier et étude historique 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé 2.7 Sources potentielles de pollution	37 53 61 62 63 63 73
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 62 63 63 73 75
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 63 73 75
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	.37 .53 .61 .62 .62 .63 63 73 75 75
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 73 75 75 76 des
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 75 76 des 78
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 75 76 des 78
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 62 62 63 75 75 75 76 des 78 78 79
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 75 76 des 78 78 79 79
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 76 des 78 79 79 95
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 76 des 78 78 79 95
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 62 63 75 75 75 75 76 des 78 78 79 95 95 abé
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 75 76 des 78 79 79 95 95 abé
3	 37 2.5.3.1 Interprétation des données géochimiques existantes. 2.6 Contexte minier et étude historique. 2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine 2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé. 2.7 Sources potentielles de pollution. 2.7.1 Cas particulier des stériles de creusement et des résidus de traitement 2.7.1.1 Stériles rocheux de creusement et d'exploitation. 2.7.2 Résidus de traitement. 2.7.2 Les eaux de mine. Caractérisation du Fonds PédoGéochimique (FPG) 3.1 Objectif 3.2 Méthodologie 3.3 Interprétation des mesures pXRF par rapport à la géochimie des sols et or sédiments de fond de vallon analysés lors de l'inventaire minier. 3.3.1 Lithologie du Dévonien Nord et formations sous et sus-jacentes. 3.3.2 Lithologie du Dévonien Sud et formations sous-jacentes du Cambrien 3.4 Détermination des FPG par élément métallique. Caractérisation de l'Etat des milieux 4.1 Les travaux de Saube et de Hoque-Rabé 4.1.2 Méthodologie d'échantillonnage. 	37 53 61 62 63 75 75 75 76 des 79 79 95 95 abé
3	 37 2.5.3.1 Interprétation des données géochimiques existantes	37 53 61 62 63 75 75 76 des 77 75 76 79 95 95 abé

4.1.3 Résultats 9 4.1.3.1 Sols et résidus 9 4.1.3.2 Eaux de surface 10 4.1.3.3 Sédiments 10	99 99 02 02
4.1.3.1 Sols et résidus	99 02 02
4.1.3.2 Eaux de surface	02
1133 Sédiments 10	02
	22
4.1.3.4 Végétaux10	03
4.2 Aval du site minier de Pic de la Fourque10	03
4.2.1 Objectif et méthodologie10	03
4.2.2 Principaux résultats	05
4.2.2.1 Sols10	05
4.2.2.1.1 Zone d'étude et secteurs investigués10	05
4.2.2.1.2 Résultats des mesures sur les sols10	07
4.2.2.2 Eaux de surface10	09
4.2.2.3 Sédiments10	09
5 Conclusions	11
6 Références1 ²	14
7 Liste des figures1	17
8 Liste des tableaux1	19
9 Liste des annexes	$2 \cup$

Mots clés : inventaire DDIE, diagnostic environnemental préliminaire, Pic de la Fourque, Salau, tungstène, Saubé, Fonds PédoGéochimique

Avertissement !

Nous attirons l'attention sur l'utilisation du mot « minier » dans ce rapport qui est un terme générique et technique et n'a aucune signification d'ordre réglementaire ou juridique.

1 INTRODUCTION

1.1 Contexte et origine de la demande

De 2009 à 2012, le groupement d'intérêt public GEODERIS, expert Après-mine de l'Etat, a mis en œuvre l'inventaire des dépôts de déchets issus de l'industrie extractive sur l'ensemble du territoire métropolitain, en application de l'article 20 de la directive européenne 2006/21/CE (inventaire dit « DDIE ») qui stipule que : « Les Etats membres veillent à ce qu'un inventaire des installations de gestion de déchets fermées, y compris les installations désaffectées, situées sur leur territoire et ayant des incidences graves sur l'environnement ou risquant, à court ou à moyen terme, de constituer une menace sérieuse pour la santé humaine ou l'environnement soit réalisé et mis à jour régulièrement. Cet inventaire, qui doit être mis à la disposition du public, est effectué avant le 1er mai 2012 [...] ».

À l'issue de cet inventaire, les dépôts enregistrés ont été regroupés en secteurs¹. Dans le cadre du volet « sanitaire et environnemental », ces derniers ont été classés selon 6 niveaux : A, B, C-, C+, D et E ; la classe E regroupant les secteurs dont : « *les dépôts miniers identifiés lors de l'inventaire DDIE sont susceptibles de présenter un risque très significatif pour la santé humaine et l'environnement. Ils nécessitent une étude sanitaire et environnementale, si elle n'a pas déjà été réalisée ». La classe A est associée aux secteurs dont : « les dépôts miniers identifiés lors de l'inventaire ne présentent pas de risque pour la santé humaine et l'environnement pas de l'inventaire ne présentent pas de risque pour la santé humaine et l'environnement. Ils ne nécessitent pas d'étude complémentaire ».*

Parallèlement au classement précédent, un classement d'ordre géotechnique a également été réalisé selon trois niveaux allant de I à III; la classe III regroupant « les secteurs présentant au moins un dépôt potentiellement instable susceptible de présenter un risque pour l'environnement immédiat. Les dépôts concernés nécessitent une étude géotechnique plus approfondie pour compléter les données et statuer sur le niveau de stabilité et des risques avant de mettre en œuvre des mesures éventuelles de gestion ». La classe I est associée aux « secteurs présentant des dépôts stables. Aucune action particulière n'est à mettre en place ».

Le secteur du Pic de la Fourque avec les stockages de déchets d'exploitation de la mine de Salau a été classé respectivement en D et en III (voir infra paragraphe 1.3). Compte tenu de ce classement et en accord avec le Ministère de la Transition écologique et solidaire ainsi que la DREAL Occitanie, une étude environnementale et sanitaire complémentaire a été inscrite au programme de 2016-2017 de GEODERIS pour le secteur du Pic de la Fourque. Elle fait suite à une première étude environnementale réalisée en 2011 de façon expérimentale et correspondant à la mise en œuvre de la méthodologie IEM sur cet ancien site minier. Elle a donné lieu aux rapports BRGM/RP-60674-FR et INERIS DRC-11-122615-13190B ainsi qu'à la synthèse technique GEODERIS S2015/100DE-15MPY-36050.

À l'issue de cette étude, des recommandations ont été faites par GEODERIS afin de limiter l'exposition aux résidus miniers et l'impact environnemental de ces derniers. Elle nécessitait toutefois d'être complétée, en particulier pour évaluer les problématiques suivantes : les émergences minières, les caractéristiques des horizons profonds dans les principaux dépôts

¹ Les titres miniers comprenant des dépôts identifiés dans le cadre de l'inventaire ont été regroupés en « secteurs ». L'élaboration de ces secteurs repose sur une liste de critères établie par GEODERIS :

⁻ statut administratif du ou des titres miniers auxquels appartiennent les dépôts : identification des titres miniers sur lesquels subsiste encore un exploitant connu, et/ou ;

⁻ substances produites et/ou exploitées, et/ou ;

⁻ contexte géologique et gîtologique, et/ou ;

⁻ appartenance au même bassin versant, et/ou ;

⁻ proximité géographique entre les titres constitutifs du secteur.

À noter que tous ces critères n'ont pas été systématiquement déterminants dans l'élaboration d'un secteur.

de résidus miniers, la qualité des milieux situés en aval du site minier (à Salau et Couflens en particulier) et la présence d'amiante environnementale.

Dans ce contexte et à la demande de la Préfète de l'Ariège et du Ministère de l'Environnement, une étude sanitaire et environnementale sur le secteur, répondant à ces besoins et destinée à appliquer les méthodologies mises à jour par GEODERIS, a été lancée fin 2016 et programmée en 2017.

Le 9 février 2017, l'Etat a attribué à la société d'exploration Variscan devenue en 2018 Apollo Minerals, un permis exclusif de recherches au droit de la mine de tungstène de Salau. En février et mars 2017, le Bureau du sol et du sous-sol de la Direction Générale de la prévention des risques du Ministère de la transition écologique et solidaire, la Préfète de l'Ariège, le Pôle Après-mine SUD et la DREAL Occitanie ont échangé à propos des enjeux méthodologiques liés au maintien de l'étude de GEODERIS tel qu'initialement définie, dans un contexte où il était demandé à l'explorateur minier de réaliser plusieurs diagnostics de contrôle et de surveillance, notamment en ce qui concerne l'amiante environnemental.

Suite à la première réunion de la Commission locale d'information, de concertation et de suivi (CLICS) du 22 mars 2017, la Préfète de l'Ariège et la DREAL Occitanie ont validé avec GEODERIS la mise en œuvre d'un diagnostic environnemental préliminaire se substituant à l'étude sanitaire et environnementale initialement programmée.

Dans le cadre de ce diagnostic il a été demandé à GEODERIS :

- une étude bibliographique consistant pour l'essentiel en une analyse des archives minières ainsi que des différentes publications relatives au site de Salau ;
- une étude géologique essentiellement basée sur l'analyse d'archives et de publications géologiques ;
- une étude du fond pédogéochimique ;
- une caractérisation de l'état des milieux en aval du site, notamment en ce qui concerne la qualité des sédiments et des eaux superficielles.

À noter que ce diagnostic ne traite pas de la problématique amiante.

Le permis de recherches pour plomb-zinc de Saubé a également été intégré à ce diagnostic dans la mesure où il s'inscrit dans le secteur minier du Pic de la Fourque et peut donc contribuer à un impact à l'aval des anciennes installations.

Pour ce diagnostic, GEODERIS s'est appuyé sur le BRGM pour le volet relatif à la géologie, pour l'évaluation du fond pédogéochimique et pour la réalisation des mesures pXRF destinées à évaluer l'impact de l'ancienne activité minière sur les sols situés en aval des dépôts de résidus.

1.2 Déroulement de l'étude

L'étude a été décomposée selon les phases principales suivantes :

- réunions de concertation entre les parties prenantes de l'étude au premier trimestre 2017 ;
- deuxième et troisième trimestres 2017 : dépouillement et étude des archives minières avec, en parallèle, réalisation des études spécifiques (géologique, fonds pédogéochimique) ainsi que des autres investigations (impacts potentiels) en lien avec les compléments ou synthèse des connaissances demandées pour le diagnostic environnemental préliminaire;

- réalisation de tous les rapports thématiques à partir du quatrième trimestre 2017 et jusqu'au deuxième trimestre 2018 ;
- quatrième trimestre 2018 : rapport de synthèse.

1.2.1 Objectifs et programme

Le diagnostic environnemental préliminaire mené en 2017 a vocation à dresser un état des lieux de la qualité des milieux en dehors de toute analyse des risques sanitaires et ce, principalement en aval du site minier avant intervention du nouvel l'opérateur minier.

L'objectif des études conduites dans le cadre de ce diagnostic était double et visait à la fois de tenter :

- d'identifier des impacts d'origine minière à l'aval hydraulique des anciennes installations minières sur lesquelles une IEM a été réalisée en 2011 (Hulot et Aubert, 2011);
- et de discriminer dans les contaminants éventuellement trouvés à l'aval du district minier, ceux d'origine naturelle de ceux issus de l'ancienne activité minière.

Pour atteindre cet objectif, le diagnostic préliminaire s'est articulé autour de cinq études :

- étude historique basée sur l'analyse des archives minières et des rapports d'étude associés ;
- étude géologique basée sur l'étude d'archives et de publications géologiques ; l'objectif a été de dresser un état des lieux des connaissances géologiques disponibles sur le secteur afin de préparer la caractérisation du fonds pédogéochimique ;
- études du fond pédogéochimique comprenant une campagne de mesures par fluorescence X portable ;
- étude spécifique des travaux de recherche de Saubé (plomb-zinc) consistant en un diagnostic environnemental comprenant la caractérisation des sources de pollution présentes (déchets miniers, émergences minières éventuelles, etc.) et des zones potentiellement impactées (avec prélèvements et mesures sur les milieux pertinents);
- caractérisation de l'état des milieux en aval du site minier de Pic de la Fourque comprenant une campagne de mesures par fluorescence X portable, ainsi que des prélèvements d'eaux de surface et de sédiments.

D'une manière générale, cette synthèse insiste sur plusieurs aspects clés du diagnostic :

- le contexte géologique (et minéralogique) qui va contrôler l'ensemble des phénomènes de concentration métallique à l'échelle des gisements ou au contraire, de diffusion des éléments chimiques à partir des teneurs anomales naturelles contenues dans certaines formations géologiques. Ce contexte va notamment servir de support à l'élaboration du fonds pédogéochimique ;
- le contexte minier et en particulier la nature et le comportement (aptitude à être entraînés ou lixiviés) des déchets, en particulier des résidus de traitement de minerai et de leurs installations (digues à résidus) qui sont les sources de contaminants encore en place le plus susceptibles de générer un impact environnemental à l'aval du secteur minier;
- les phénomènes exceptionnels, en particulier des phénomènes exceptionnels naturels dus au contexte climatique (crues par exemple) ou accidents industriels, qui

ont pu à un moment ou un autre de la vie de la mine de Salau, favoriser la migration ou le transport des contaminants à l'aval hydraulique du site.

1.2.2 Zone d'étude

Le périmètre de la zone d'étude a été défini à partir des informations acquises lors de la phase informative. Comme illustrée sur la carte de la Figure 1, cette zone couvre très partiellement les deux communes de Couflens et de Seix et comprend :

- au sud, le secteur minier du Pic de la Fourque (et donc toutes les anciennes installations de la mine de Salau) qui inclut au sud-ouest les prospects à Pb/Zn de Saubé ;
- la région comprise entre le village de Salau au sud et la ville de Seix au nord, principalement centrée sur la rivière du Salat et ses affluents.

Cette disposition selon un transect nord-sud et sur une longueur d'environ 18 km, a l'avantage de suivre les zones à l'aval du site minier qui pourraient être potentiellement impactées le long de la plaine alluviale du Salat et dans les zones à aléas « inondations forts à moyens ». Elle offre aussi l'opportunité de recouper perpendiculairement l'ensemble des formations géologiques orientées est-ouest et concernées par l'étude géologique et l'étude du fond pédogéochimique.

Figure 1 - Zone à investiguer dans le cadre du diagnostic environnemental préliminaire à l'aval du secteur minier du Pic de la Fourque

Le présent document constitue le rapport de synthèse du diagnostic environnemental préliminaire. Il comprend en dehors du 1^{er} chapitre introductif :

- le chapitre 2 rassemblant un maximum de connaissances et de données issues de la phase informative. Ce chapitre inclut en particulier les résultats de l'étude géologique régionale et locale ainsi que le contexte minier et son histoire industrielle. Il présente aussi en détails la problématique des déchets qui peuvent être à l'origine de pollutions potentielles à l'aval du site minier ;
- le chapitre 3 concernant l'essentiel des données acquises sur la détermination du fond pédogéochimique régional;
- le chapitre 4 synthétisant les principaux résultats d'une campagne d'analyse des milieux à l'aval du secteur minier;

• le chapitre 5 concluant sur les résultats essentiels à retenir de ce diagnostic environnemental préliminaire.

1.3 Le secteur minier du Pic de la Fourque dans le cadre de l'inventaire DDIE

La zone d'étude comprend la concession de tungstène du Pic de la Fourque ainsi que le permis de recherche pour plomb/zinc de Saubé et de Hoque-Rabé.

Le secteur du Pic de la Fourque défini dans le cadre de l'inventaire DDIE comprend la concession de tungstène de même nom. Huit dépôts de déchets issus de l'extraction et du traitement de minerai y ont été inventoriés. D'après le classement issu de cet inventaire (classement « sanitaire et environnemental »), deux d'entre eux correspondant à deux verses à résidus de traitement (dépôt 09_0019_A_T1 et dépôt 09 0019 A T7) présentent des scores de risques élevés (supérieurs ou égaux à 8 voir Tableau 1). Les autres dépôts sont constitués par des verses de résidus d'extraction situées en sortie de travaux souterrains.

		ſ		SC							S DE RISQUE PAR DEPOT												
	Non pueretrup	CLASSE	CLASSE	NOM DU TITRE MINIER SUBSTANCE	NOM DU TITRE MINIER SUBSTANCE			SR POP	& ENV					SR	STABI	LITE							
	NOW DO SECIEOR	POP-ENV.	STAB.			NOM DO TITRE MINIER	NOM DO TITRE MINIER	NOW DO THRE MINIER	NOW DO TITKE MINIER	NOW DO THRE MINIER	SUBSTANCE	SUBSTANCE	NOW DO TITLE MINIER SUBSTAILE	IDENTIFIANT DEPOT	Ban	Ε	E	£/£	G. Profond		nd	G. Superficiel	
		_					rop.	Sup.	Sout.		В	Η	R	В	Η	R	В	Н	R				
Ī	PIC-DE-LA-FOURQUE		Dia da la Caurana Tu	Transform	09 0019 A T1	8	10	5	8	0	5	5	5	3	5	1	8	3					
l		U	<u> </u>	Pic-de-la-Fourque	Tungstene	09_0019_A_T7	5	10	5	10	0	0	5	0	3	5	3	8	3				

 Tableau 1 - Scores de risques attribués aux dépôts du secteur du Pic de la Fourque

 Légende du tableau :

Classe POP-ENV. = classe « population-environnement » du secteur, **Classe STAB.** = classe « stabilité » du secteur,

SR POP & ENV = scores de risque « population et environnement », **SR STABILITE** = scores de risque « stabilité », **Pop.** = population, **E Sup.** = eaux superficielles, **E Sout.** = eaux souterraines, F/F = faune et flore, **G. Profond** = glissement profond, **G. Superficiel** = glissement superficiel, **Rupture** = « rupture d'un ouvrage de retenue »**B** = bâti, **H** = réseau hydrographique, **R** = réseaux routiers et ferroviaires

Les scores indiqués dans le Tableau 1 ont été évalués dans le cadre du travail d'inventaire et de classement DDIE effectué sur l'ancienne région Midi-Pyrénées (GEODERIS, 2013). Ils ont été évalués selon la méthodologie décrite dans le rapport GEODERIS de 2011 (rapport N2011/011DE-12NAT2120).

Quant aux dépôts observés sur les sites de recherche de Saubé et de Hoque-Rabé, ils n'ont pas fait l'objet de classification compte tenu de la nature des matériaux (roches stériles faiblement minéralisées) et des volumes en jeu trop faibles.

2 PHASE INFORMATIVE

La phase informative menée par GEODERIS a consisté en la recherche systématique de toute information relative au contexte physique, à l'activité minière (géologie, caractéristiques du gisement minier, modalité d'exploitation, installations de traitement du minerai, installations de stockage des déchets, gestion des eaux de surface, etc.) et aux usages et enjeux sur la zone (gestion de l'eau potable, activités de loisirs, activités agricoles, de culture et pastorale, etc.) (GEODERIS, 2018).

Au total, 364 documents issus des archives de la DREAL (siège à Toulouse et Unité Interdépartementale Haute-Garonne - Ariège à Foix), du BRGM (archives de la Société Minière d'Anglade : SMA) ainsi que des Archives départementales ont été étudiés, numérisés puis enregistrés.

Cette synthèse a été réalisée en étroite collaboration avec M. Francis COTTARD Expert en environnement minier du bureau « EnviroFormation ».

2.1 Contexte climatique et topographique

Le climat spécifique du secteur d'intérêt est océanique chaud avec des précipitations annuelles de l'ordre de 900 à 1 000 mm en moyenne (données Météo Ciel ©) et même lors du mois le plus « sec » de l'année, beaucoup de pluie est enregistrée. Les précipitations mensuelles sont de l'ordre de 50 à 105 mm avec des minima caractérisant davantage les mois de février et de juillet et des maxima, les mois d'avril et de mai (Tableau 2 et Figure 2).

L'influence de la montagne est prépondérante puisque le secteur est entouré de hautes crêtes avec deux grandes avancées de la haute chaine en son milieu. L'altitude apparaît donc comme un facteur climatique primordial. Le climat est donc de type front pyrénéen accentué, avec un maximum de pluviosité.

Le manteau neigeux, présent à partir de 2 000 mètres d'altitude, s'installe au mois de novembre et disparaît au mois d'avril. Les vents dominants sont orientés ouest/nord-ouest à nord/nord-ouest.

D'après le rapport « Etude de bassin - Torrent des Cougnets » émis par la Direction Départementale de l'Agriculture en 1985 (DDA, 1985), les températures varient en fonction de l'altitude et de l'exposition. Le mois de février est le mois le plus froid. Le froid conditionne la durée de l'enneigement, la durée et l'intensité de l'évapotranspiration ainsi que le couvert végétal. La moyenne annuelle est de 9,6 °C et les cycles gel-dégel ont des actions essentielles en ce qui concerne l'altération des roches par gélifraction.

Les périodes de hautes eaux se caractérisent par deux « maxima » :

- l'un au printemps (avril mai) influencé par la fonte des neiges ;
- l'autre à l'automne (novembre décembre) dû aux effets de la pluie.

Des données météorologiques ont été obtenues (<u>http://www.skiinfo.fr</u>) pour la station de ski du Guzet, située à environ 9,5 km à l'est-nord-est de la mine de Salau entre 1 400 m et 2 100 m d'altitude. Le bas de la station est donc à une altitude assez proche du carreau 1230. Les informations obtenues montrent que les premières chutes de neiges débutent généralement au mois de novembre ou décembre pour se terminer aux mois de mars ou d'avril soit un recouvrement neigeux sur une période d'environ 6 mois.

	Données 1981 - 2010 RR (mm)
Janvier	83,3
Février	61,6
Mars	80,2
Avril	104,6
Mai	101,8
Juin	77,4
Juillet	52,2
Août	72,6
Septembre	73
Octobre	80,1
Novembre	82
Décembre	83,4
Annuelle	952,2

 Tableau 2 - Moyennes (arithmétiques) du cumul des précipitations mensuelles (RR) entre 1981 et 2010, à la station de Saint-Girons (données MétéoCiel.fr)

Figure 2 - Graphique des moyennes de précipitations mensuelles (RR) enregistrées à la station de Saint-Girons entre 1981 et 2010

Le secteur est donc soumis à des précipitations régulières et abondantes. La voie de transfert des polluants par drainage est donc à considérer. De surcroît, ce phénomène est accru en période de fonte de neige.

En termes orographiques, l'emprise de l'étude s'inscrit dans la partie centrale de la chaîne pyrénéenne, plus exactement sur le versant nord des Pyrénées de l'extrême sud-ouest du département de l'Ariège (Figure 3). Les plages altitudinales s'échelonnent entre 850 m (à la confluence entre le Salat et le Cougnets) et 2 060 m (Pic de la Fourque, au sud) avec une topographie relevant une forte proportion de pentes à dénivelés supérieures à 40-50%, ainsi que la présence de falaises.

Figure 3 - Situation orographique au droit de l'emprise de l'étude (source : Géoportail, © IGN)

2.2 Contexte hydrologique

Le réseau hydrographique de la zone d'étude est constitué par trois cours d'eau principaux, le Salat, le Cougnets et le Mail.

La mine de Salau est située dans le bassin versant du torrent des Cougnets (Figure 4).

Le torrent des Cougnets est le premier affluent amont du Salat (cours d'eau de 1^{ère} catégorie²) en rive droite. Il se situe entièrement dans la commune de Couflens et conflue avec le Salat dans le hameau de Salau à 4 km en amont du Chef-Lieu de Commune. L'agglomération de Salau est bâtie sur le cône de déjection du torrent.

Les informations présentées ci-après sont en majeure partie issues du rapport « Etude de bassin - Torrent des Cougnets » publié par la Direction Départementale de l'Agriculture en 1985.

² Une rivière de première catégorie est un cours d'eau où le peuplement piscicole dominant est constitué de salmonidés (truite, omble chevalier, ombre commun, huchon).

Figure 4 - Réseau hydrographique principal sur l'emprise de l'étude, sur fond SCAN 100 ® IGN

Présentation du torrent des Cougnets et de son bassin versant

Le torrent des Cougnets draine un bassin versant de 12,6 km², il est limité :

- <u>au nord</u> par la ligne de crête dite des « Douillous » qui passe par la Cabane du même nom et qui rejoint le Cap du Mont-Sain (2 276 m);
- <u>à l'est</u> par la ligne de crête qui joint le Cap du Mont-Sain au Cap de Ruhos 2 618 m, par le Pic de Soubirou (2 277 m), le Pic Peyrenère (2 257 m), le Pic des Maurets (2 262 m), le Pic de l'Arrech (2 350 m);
- <u>au sud</u> par la Frontière France/Espagne appuyée sur la ligne de crête qui va du Cap de Ruhos au Pic des Rouges (2 644m) en amont du Cirque d'Anglade, en passant par le Pic de la Montagnale (2 623 m), le Pic de Montareing (2 661 m);
- <u>à l'ouest</u> par la ligne de crête dite de la Malos d'Anglade passant par le Lane des Moulos (2 559 m) ensuite par la ligne de crête dite de la Fourque avec son point culminant, le Pic de la Fourque (1 888 m) et son passage dans le bois de même appellation.

Le bassin de réception se divise en trois bassins nettement différenciés, séparés du nord au sud par la crête des Haourels et la crête des Lias. Cette dernière délimitant le Cirque d'Anglade. Ce cirque ne devait pas avoir initialement de chenal d'écoulement, les eaux s'écoulant par le réseau karstique.

C'est encore le cas, aujourd'hui bien qu'un chenal peu prononcé se soit creusé par écoulement du trop-plein. Les deux autres bassins en forme de triangle s'appuient sur des hauts sommets rocheux et convergent vers deux goulets où débutent les chenaux d'écoulement. De nombreuses ravines drainent ces bassins de réception et forment un réseau hydrographique très ramifié.

On distingue, suivant la dénomination de la carte topographique au 1/25 000 illustrée par la Figure 5 :

- <u>à l'ouest</u> : le Torrent d'Anglade qui prend sa source en aval du Lane des Moulos et a une direction sud/nord ;
- <u>au sud-est</u>: le Torrent du Saubé (appelé ruisseau de Baume au cadastre) alimenté en amont par le Fontaret qui nait en aval du Pic de la Montagnoule et suit une direction sud-est/nord-ouest.
 À leur confluence (+1 110 m NGF) ces deux torrents s'écoulent dans une vallée profonde et étroite, longue de 1 830 m, large de 20 à 30 m et forment le torrent des Cougnets ;
- <u>au nord-est</u> : un affluent rive droite des Cougnets, le Hoque de Rabé (dénommé au cadastre Ruisseau de Caunecaoude) qui se jette dans le torrent principal à 990 m d'altitude.

Le torrent débouche à 900 m d'altitude dans le cône de déjection de 5 hectares environ à forte pente.

La confluence des Cougnets et du Salat se situe à la cote 854 m.

Les versants du torrent d'Anglade voient leurs pentes aller de 45 à 80%, ceux du torrent des Cougnets varient de 40 à 75%.

Figure 5 - Contexte hydrographique de la mine de Salau et des travaux d'exploration de Saubé (Source : GoogleEarth 2008)

Présentation du bassin versant d'Anglade situé en amont de la mine

Les pentes raides de 60 à 100% concentrent rapidement les eaux dans le cirque d'Anglade. Le cirque peut emmagasiner environ 20 000 m³ d'eau et servir d'écréteur de crue, dans la mesure où l'évacuation dans le réseau karstique est inférieure à l'apport du ruissellement. La principale résurgence du cirque se situe dans le torrent d'Anglade à l'aval de la route d'accès à la mine, à la cote 1 170 m. D'autres résurgences doivent exister mais n'ont jamais été repérées. D'après le rapport « Etude de bassin - Torrent des Cougnets », le torrent d'Anglade n'est plus figuré sur le plan cadastral en dehors de l'emprise du cirque, mais est représenté à nouveau au niveau de la résurgence. Cela laisse supposer qu'au moment de l'établissement du Cadastre en 1839 le chenal s'écoulant directement du cirque d'Anglade (et dissocié de la résurgence) n'existait pas. Le réseau karstique évacuait donc à l'époque la totalité des eaux.

Le ravin du Pic de la Fourque et les ravins de la Hogue Torte sont les principaux affluents alimentant par intermittence (surtout à la fonte des neiges) en rive gauche le torrent d'Anglade.

Historique des crues

Les crues furent nombreuses, la plus ancienne répertoriée aux Archives Départementales date de 1801 et a entraîné la mort de 29 personnes sur la commune de Salau. Mais il est certain que d'autres crues aussi dévastatrices avaient eu lieu auparavant.

Ces crues dévastatrices furent probablement constituées de matériaux solides (laves torrentielles), mais très peu de données relatives à leur consistance et à leur formation sont connues. Les crues les plus dangereuses, sous forme de « lave » certainement, se produisent à l'automne (octobre - novembre). Les dégâts qu'elles causent portent sur la destruction des voies de communication et la destruction d'habitations.

Deux crues particulièrement dévastatrices ont eu lieu en octobre 1937 (23 maisons détruites et un mort à Salau) et novembre 1982 (quasi-destruction de l'église romane de Salau).

Lors de ces crues, une partie des rives du torrent des Cougnets a été emportée dans la commune de Salau. L'inondation de 1982 a également été susceptible d'apporter dans certaines zones de Salau des résidus de laverie issus des dépôts.

Suite à la crue dévastatrice de 1982, des travaux ont été réalisés afin de créer :

- un seuil en gabions, situé sur le ruisseau d'Anglade entre la route des mines et le cirque d'Anglade, afin de ralentir la vitesse d'écoulement du torrent ;
- un barrage, situé sur le torrent des Cougnets, en aval de la mine afin de stabiliser le torrent.

Les rives du torrent des Cougnets s'étant en partie affaissées et ayant été emportées lors de la crue de 1982, de la terre a été apportée depuis Saint Girons afin de combler les bords du torrent des Cougnets, notamment au niveau des chalets situés à proximité des anciennes habitations HLM des mineurs.

Ces évènements et leurs conséquences sont décrits dans le Tableau 3 suivant.

Date	Evènement	Cours d'eau	Conséquences et nature du phénomène
04/10/1937	Crue torrentielle	Le Salat	Village de Salau : 36 maisons détruites et 19 fortement endommagées, 1 personne noyée, 60 personnes évacuées.
26/10/1937	Crue torrentielle	Le Salat	Village de Salau : 4 maisons détruites et évacuation de la population.
07 au 08/11/1982	Crue torrentielle avec apport de matériaux de la mine, phénomène d'embâcle	Ruisseau d'Anglade, des Cougnets et rivière du Salat	Village de Salau : destruction de 50% de l'église, du préau de l'école et de deux chalets, route coupée, 150 personnes évacuées. Stériles stockés dans le ruisseau d'Anglade aux niveaux 1430 et 1320 ont été charriés et se sont ajoutés au ruissellement du couloir d'avalanche du Pic de la Fourque. Au niveau du Cougnet se sont ajoutés des matériaux stériles en provenance de Saubé et du Hoque de Rabé.

Tableau 3 - Crues torrentielles, de forte intensité, référencées dans le rapport du RTM

2.3 Contexte hydrogéologique

Les caractéristiques hydrogéologiques des formations du substratum sont très diverses, ainsi se distinguent :

- les calcaires qui présentent une grande perméabilité liée aux phénomènes karstiques et une importante circulation d'eau souterraine. Un karst important situé à proximité de la mine, relie le cirque d'Anglade où la quasi-totalité des eaux superficielles s'engouffre pour ressortir à une résurgence située en aval du carreau 1230, dans le torrent d'Anglade.
- les schistes carburés et les granodiorites qui sont souvent fissurés et présentent une perméabilité du type fracturé.
- les formations quaternaires :
 - la couverture des versants, altérée, est peu perméable et présente des zones humides avec des émergences diffuses ;
 - les éboulis des pieds de sommets sont très perméables et captent une grande partie du ruissellement ;
 - le cône de déjection est constitué de fragment de toutes les roches et est bien drainé.

La forte hétérogénéité hydrogéologique du massif du Pic de la Fourque (karst dans les calcaires, et milieu fracturé des granodiorites) n'est pas propice à la présence d'un aquifère contenu dans la porosité des milieux. Les eaux souterraines sont contenues dans des failles et fractures du massif granitique et sont également en relation avec les différents karsts liés aux calcaires. De plus, les galeries de la mine ont pu créer des chemins d'écoulement préférentiels au sein de ces massifs. Ainsi, il n'est pas possible à l'état actuel des connaissances de déterminer l'origine des multiples résurgences présentes dans le massif du Pic de la Fourque.

2.4 Contexte environnemental

2.4.1 Parc Naturel Régional des Pyrénées Ariégeoises

L'ancienne mine de Salau est située au sein du Parc Naturel Régional des Pyrénées Ariégeoises qui comprend 142 communes sur une surface de 2 465 km² (Figure 6).

Créé en 2009, le Parc naturel régional des Pyrénées Ariégeoises vient reconnaître l'intérêt et la diversité du patrimoine naturel, culturel et paysager de ses 142 communes. Il abrite un patrimoine naturel avec des milieux remarquables et de nombreuses espèces endémiques ou menacées : lsard, Gypaète barbu, Desman et Euprocte des Pyrénées, Grand tétras, Lys des Pyrénées, etc. Il est également le siège de nombreuses activités humaines (agriculture, artisanat, industries, etc.) dont certaines, telles que le pastoralisme, lui sont emblématiques. Ses sites préhistoriques et historiques (grottes ornées de Niaux, Bédeilhac et du Mas d'Azil, Cité antique de Saint-Lizier, etc.), son histoire, sa culture, son patrimoine bâti et ses paysages en font également un espace reconnu.

Le Parc impulse ou mène des actions dans des domaines aussi divers que la protection de la faune et de la flore, la restauration du patrimoine rural, la préservation des paysages, l'urbanisme et la gestion de l'espace, la promotion des économies d'énergie et des énergies renouvelables, l'éco-responsabilité et le management environnemental, l'éducation au territoire, la valorisation de la forêt et du bois, la promotion des savoir-faire et produits locaux, le tourisme durable, etc.

Figure 6 - Localisation du Parc Naturel Régional des Pyrénées Ariégeoises (Google Maps 2011)

2.4.2 Zone NATURA 2000

Le secteur étudié fait partie d'une zone classée NATURA 2000 par Arrêté ministériel du 18 mai 2015 modifiant l'arrêté du 5 juillet 2005 portant désignation du site Natura 2000 massif du mont Valier (zone de protection spéciale). L'espace délimité s'étend dans le département de l'Ariège sur une partie du territoire des communes d'Arrien-en-Bethmale, Bethmale, Bonac-Irazein, Bordes-sur-Lez, Couflens et Seix.

2.4.3 Zone naturelle d'intérêt écologique, faunistique et floristique (ZNIEFF)

L'ancienne mine de Salau est située dans l'emprise d'une ZNIEFF de type I (Massif du Pic de Certescans - Z2PZ0462) et d'une ZNIEFF de type II (Montagnes d'Ercé, d'Oust et de Massat - Z2PZ2082).

ZNIEFF de type II : Montagnes d'Ercé, d'Oust et de Massat - Z2PZ2082

La ZNIEFF de type II réunit des milieux naturels formant un ou plusieurs ensembles³ possédant une cohésion élevée et entretenant de fortes relations entre eux.

Elle se distingue de la moyenne du territoire régional environnant par son contenu patrimonial plus riche et son degré d'artificialisation plus faible.

Les ZNIEFF de type II sont donc des ensembles géographiques généralement importants, incluant souvent plusieurs ZNIEFF de type I, et qui désignent un ensemble naturel étendu dont les équilibres généraux doivent être préservés. Cette notion d'équilibre n'exclut donc pas qu'une zone de type II fasse l'objet de certains aménagements sous réserve du respect des écosystèmes généraux.

ZNIEFF de type I : Massif du Pic de Certescans - Z2PZ0462

La ZNIEFF de type I est un territoire correspondant à une ou plusieurs unités écologiques homogènes⁴.

Elle abrite au moins une espèce ou un habitat caractéristique remarquable ou rare, justifiant d'une valeur patrimoniale plus élevée que celle du milieu environnant.

Les ZNIEFF de type I sont des sites particuliers généralement de taille réduite, inférieure aux ZNIEFF de type II. Ils correspondent a priori à un très fort enjeu de préservation voire de valorisation de milieux naturels.

2.4.4 Espèces menacées et/ou protégées

La concession du Pic de la Fourque étant située dans l'emprise du parc Naturel Régional des Pyrénées Ariégeoises, d'une ZNIEFF de type I et d'une ZNIEFF de type II, des inventaires ont été réalisés sur la faune et la flore afin de déterminer les espèces protégées et les espèces menacées. Ces inventaires réalisés sur la commune de Couflens ont permis d'identifier les espèces suivantes comme vulnérables (Tableau 4).

³ Chaque ensemble constitutif de la zone est un assemblage d'unités écologiques, homogènes dans leur structure ou leur fonctionnement.

⁴ Par unité écologique homogène, on entend un espace possédant une combinaison constante de caractères physiques et une structure cohérente, abritant des groupes d'espèces végétales ou animales caractéristiques.

Nom scientifique	Nom français	Statut	Description / Habitat					
Mammifères								
Galemys pyrenaicus ¹	Desman des Pyrénées	Vulnérable	Mammifère de la famille des talpidés qui ne vit que dans les Pyrénées et le nord de l'Espagne et du Portugal. C'est un insectivore semi-aquatique, vivant à proximité des torrents et de mœurs essentiellement nocturne. Il est surnommé rat à trompette à cause de la forme de son museau.					
		L'habitat caractéristique du desman est cor cours d'eau, dit « oligotrophes » de basse, m haute altitude (cours d'eau déficients en sels essentiels à la croissance des plantes donc d de peu d'algues).						
			Les cours d'eau que côtoie le desman sont neutres de toute pollution anthropique. En effet, les larves dont il se nourrit sont sensibles aux moindres variations d'acidité, de température, d'oxygénation et d'opacité de l'eau. En conséquence, la présence du desman sur une rivière démontre la haute qualité des eaux qu'elle charrie.					
Poissons								
Salmo salar ¹	Saumon atlantique	Vulnérable	Le saumon atlantique est une espèce migratrice qui effectue sa croissance en mer (dans l'Atlantique Nord) et vient se reproduire dans les cours d'eau à fond de graviers dans des eaux bien oxygénées. Les saumons sont des carnivores à tous les stades du cycle biologique (larves d'insectes, vers, poissons, etc.).					
Flore								
Polystichum brauniŕ	Polystic de Braun	Vulnérable	Feuilles en touffe de 40 à 50 cm. Fougère aux frondes dressées, velues, d'un vert foncé. Pousses blanches et floconneuses. Feuillage persistant disparaissant tout doucement à la fin de l'hiver. Aime les sols ordinaires et humifères avec un pH Neutre à légèrement acide (6,5 <ph<7,5)< td=""></ph<7,5)<>					

¹: La Liste rouge des espèces menacées en France - UICN France, MNHN, SFEPM & ONCFS (2009).
 ²: Livre Rouge de la flore menacée de France. Olivier, L., Galland, J. P. & Maurin, H., [Eds]. 1995.
 Tableau 4 - Espèces vulnérables recensées dans la commune de Couflens

À ces espèces vulnérables, il convient d'ajouter dans la commune de Couflens, les espèces protégées telles que le bouquetin, l'ours, le gypaète barbu, le vautour percnoptère d'Egypte, le vautour fauve, le Circaète Jean-le-Blanc et l'aigle royal.

Nous mentionnerons également le classement du Salat et de ses affluents, en liste 1 pour sa préservation en tant que rivière à caractère patrimonial pour notamment la présence de migrateurs amphihalins et ses caractéristiques de réservoir biologique.

2.5 Contexte géologique

Le but de la description détaillée du contexte géologique, est de déterminer :

- la localisation et les caractéristiques des principales formations lithologiques (en insistant tout particulièrement sur celles qui concernent les zones investiguées en 2017);
- le contexte gîtologique, dont la morphologie des corps minéralisés, les différents types de minerai et la paragenèse minérale associée ;
- la composition en éléments majeurs et traces des principales formations et des minerais ;
- la liste des substances retenues, c'est-à-dire imputables à l'activité minière et potentiellement présentes dans les sources de pollutions générées par elle.

Les données obtenues sont issues du rapport BRGM intitulé « Contexte géologique et minéralisations naturelles en métaux et métalloïdes potentiellement contaminants sur le secteur minier du Pic de la Fourque » (Melleton, 2018).

2.5.1 Contexte géologique régional et local

2.5.1.1 Contexte géologique régional : la zone axiale des Pyrénées

S'étirant sur près de 450 km entre l'Atlantique à l'ouest et la Méditerranée à l'est, la chaîne des Pyrénées résulte de la collision entre la microplaque ibérique et la plaque européenne entre le Crétacé supérieur et le Néogène.

Le cœur de la chaîne, où se trouve le site d'étude, correspond à la Zone Axiale, qui est bordée au nord par la Zone Nord Pyrénéenne et au sud par la Zone Sud Pyrénéenne.

La Zone Axiale est principalement constituée de formations d'âges tardi-néoprotérozoïques à paléozoïques inférieures affectées par la déformation et le métamorphisme varisque et recoupées par des massifs granitiques tardi-orogéniques.

La Zone Axiale est limitée au nord par la faille nord-pyrénéenne qui correspond à un système d'accidents très redressés, correspondant à l'inversion des failles normales du rifting crétacé (Figure 7 et Figure 8).

Figure 7 - (A) Localisation de la chaîne pyrénéenne et (B) ses grandes divisions structurales (modifiée d'après Padel, 2016)

2.5.1.2 Contexte géologique local

Succession lithostratigraphique

La haute vallée du Salat le long de laquelle s'étend le secteur de cette étude est perpendiculaire aux structures principales et contacts entre les formations lithologiques majeures (Figures 9 et 10 : cartes géologiques au 1/50 000 de Saint Girons (1074) et d'Aulus (1086)).

Au nord du Moulin Lauga (commune de Seix), les formations appartiennent au fossé d'Aulus (Figure 9). Elles sont principalement composées de bas en haut :

 d'une granodiorite (
 ^γ₄) d'âge varisque et affleurant le long d'une bande NW-SE de quelques centaines de mètres dans la partie nord du village de Seix ;

Figure 9 - Extrait de la carte géologique au 1/50 000 de Saint-Girons sur le secteur Moulin Lauga - Oust

- du Lias calcaire et dolomitique (I₂₋₄), composé de brèches, calcaires et dolomies recristallisées, à l'affleurement sur une bande étroite d'allongement NW-SE juste au sud de Seix ;
- du Jurassique Moyen et Supérieur dolomitiques (jD), incluant des dolomies noires fétides et des marbres dolomitiques affleurant juste au sud-est de Seix ;
- des marbres du Crétacé inférieur (n_{5-6C}), présent au sud depuis le contact anormal avec les séries paléozoïques de la zone axiale au niveau du Moulin Langa, puis dans une bande étroite au nord de Coume Chaude, puis surmontant le Jurassique au sud de Seix ;
- des cornéennes (n_{7ak}) recouvrant la formation précédente dans le cœur des synclinaux et correspondant à des pélites noires indurées et silicifiées ;
- de la série cénomano-coniacienne des Flyschs à Fucoïdes (C_{2-4F}), constituée de formation détritiques (marnes, brèches, conglomérats).

La plupart des contacts entre ces différentes formations sont anomaux suite au jeu tectonique pyrénéen, hormis entre les formations du Lias (I_{2-4}), du Jurassique Moyen et Supérieur (jD) et des marbres du Crétacé inférieur (n_{5-6C}) ainsi qu'avec les flyschs transgressifs (C_{2-4F}).

Au sud du Moulin de Lauga, les formations rencontrées sont d'âge paléozoïque et appartiennent à la zone axiale.

La série la plus ancienne présente sur la zone d'étude correspond à <u>la formation d'Evol</u> (<u>Cambrien, k₁₋₃</u>), un puissant complexe (plus de 2000 mètres) schisto-gréseux à intercalations carbonatées, de quartzites, de grès, de conglomérats et plus rarement de schistes noirs et affleurant à l'extrémité sud de la zone d'étude, notamment dans les secteurs du Mont Rouch et du cirque d'Anglade, en englobant vers le sud la ligne de crête jusqu'au Cap de Ruhos et au-delà vers l'est. Cette formation est très déformée avec une schistosité bien marquée, en particulier dans les niveaux à protolithe plus pélitique. C. Derré (date de publication inconnue) souligne l'existence de nombreux niveaux à sulfures dans cette formation : pyrite, pyrrhotite (en particulier dans des shales gréseux peu carbonatés dans le secteur des sources du Salat -SW de Salau, et en association avec sphalérite, chalcopyrite et ilménite), mais aussi arsénopyrite (présence d'une lentille plissée à filonnets de quartz à arsénopyrite dans la vallée du Fontaret, au SW du col de Cruzous). Ces observations sont confirmées par Gerbal & Ledru (1985), qui ont aussi observé dans le même secteur des filons de quartz à malachite, ainsi qu'à arsénopyrite, chalcopyrite et or.

C. Derré montre une zonalité verticale avec une concentration en sphalérite qui augmenterait de la base vers le toit. La pyrite est plus abondante dans les niveaux riches en matière organique.

Cette formation est chevauchée au nord par <u>la série dite du « Dévonien Sud »</u>, constituée du mur vers le toit (Figures 10 et 11) :

 d'une alternance silto-carbonatée d'âge Silurien supérieur - Lochkovien (s-d₁, premier étage du Dévonien). D'après Kaelin (1981), celle-ci débute par un banc de calcaires recristallisés à entroques d'une puissance de 5 à 10 mètres et passe progressivement à une séquence rythmée centimétrique puis décimétrique de bancs de pélites schisteuses sombres et de bancs de dolomie et calcaires bleus. Ces alternances portent le nom local de « barégiennes ». Localement, de fins niveaux de pélites peuvent montrer la présence de sulfures disséminés (pyrite, sphalérite, chalcopyrite). Les plissements affectant cette série entraînent des variations importantes de sa puissance ;

Figure 10 - Extrait de la carte géologique au 1/50 000 d'Aulus sur les environs de Couflens

Figure 11 - Succession lithostratigraphique synthétique du Dévonien Sud (extrait de Ternet et al., 1997)

- des calcaires de Salau (d₂₋₃), correspondant à une puissante formation homogène (40 à 50 mètres) de calcaires massifs gris-bleus présentant des rubanements caractéristiques de lits graphiteux. La stratification n'est généralement pas visible et le rubanement observé est une transposition d'origine tectonique correspondant à une schistosité S₁ (Guérangé et Lozes, 1981). Recristallisés en cipolins sous l'effet du métamorphisme régional et du métamorphisme de contact associé à l'intrusion de granodiorite, ces calcaires passent à l'est à des dolomies. À noter l'existence de lentilles de sphalérite au sommet de la formation (Ternet *et al.*, 1997);
- au nord, par un contact anormal (cisaillement), de la formation des pélites bleutées à intercalations de calcaires noirs à crinoïdes (d₃₋₄). Cette formation présente une patine rouille et un débit schisteux très marqué et présente une épaisseur qui serait comprise entre 50 m et 100 m. La masse pélitique est formée d'alternances millimétriques à centimétriques de lits phyliteux à phylito-gréseux et recoupés par des intercalations lenticulaires de calcaires bleus ou noirs de puissance décimétrique à métrique.

Figure 12 - Succession lithostratigraphique synthétique du Dévonien Nord et des formations susjacentes (extrait de Ternet et al., 1997)

En allant vers le nord, les formations affleurantes appartiennent ensuite au Dévonien Nord qui comprend, de bas en haut (Figure 12 ci-avant) :

 une alternance de schistes et de calcaires (d₁), parfois avec des intercalations gréseuses et d'une puissance variant de 40 à 100 m;

- une barre massive de calcaire gris à crinoïde (d₂) d'une puissance de 20 à 30 mètres et constituée de bancs centimétriques à décimétriques. Des filonnets à sphalérite et galène parallèles à la stratification sont connus localement ;
- une série de schistes gris-verts (d₃) avec des intercalations de calcaires gris-bleu décamétriques et couronnée par un niveau dolomitique. L'épaisseur totale est de 100 à 150 mètres ;
- une succession de schistes violets et de calcschistes surmontés d'une barre calcaire (d₄₋₅);
- des calcaires noduleux et amygdalaires (d₅₋₇) d'une puissance d'au moins 100 mètres.

Cette série du Dévonien Nord est largement affectée par des plis, ce qui entraîne une répartition répétitive des affleurements le long de la vallée du Salat en remontant vers le nord.

Le Dévonien Nord surmonte une série de schistes noirs pyriteux du Silurien (s_{1-3}) qui affleurent sur une bande est-ouest juste au nord de Couflens. À l'affleurement, cette formation présente une patine rouille typique (Figure 13). Par ailleurs, les sources et suintements drainant celle-ci montrent aussi une teinte ferrugineuse. Comme nous le verrons plus loin, cette formation possède vraisemblablement un fond géochimique qui se distingue des autres formations environnantes, à tendance silico-clastique et/ou carbonatée.

Figure 13 - Patine rouille caractéristique des schistes noirs s₁₋₃ (à gauche) et sa pyrite finement disséminée (à droite) (photos BRGM)

Au sud du Pont de la Taule (Figure 14), des séries carbonifères composées de jaspes à niveaux phosphatés (h_{1-2}), passant ensuite à des pélites vertes puis grises et noires avec des intercalations gréseuses de plus en plus fréquentes vers le toit (h_3) et correspondant au faciès Culm, c'est-à-dire à une sédimentation synchrone de l'orogenèse varisque, reposent sur les termes supérieurs du Dévonien Nord.

Du point de vue des roches magmatiques, la granodiorite de Salau (γ 4S) est à l'origine des minéralisations à tungstène du Pic de la Fourque. Mise en place au sein des calcaires de Salau (d₂₋₃), elle est matérialisée par un petit corps apical affleurant selon une forme plus ou moins ovoïde (800 mètres pour 1000 mètres environs) juste au sud du hameau de Salau (Soler, 1980b ; Ternet *et al.*, 1997).

Des sills de granitoïdes (y) ont aussi été observés autour de la granodiorite de Salau, en particulier à l'est dans le secteur de Saubé et à l'ouest dans les bois de la Lanette et de la

Péguille. Ils peuvent atteindre une extension kilométrique. Certains recouperaient la granodiorite de Salau (Derré, 1978), alors que d'autres sont très clairement plissés. Leurs compositions varient de dioritique à granodioritique (plus ou moins équivalente à la granodiorite de Salau).

sur le secteur Couflens - Pont de la Taule

Métamorphisme de contact

La mise en place de la granodiorite du Pic de la Fourque entraîne un métamorphisme de contact des formations encaissantes, à la fois des calcaires de Salau (d₂₋₃) et des alternances schisto-carbonatées sous-jacentes (barégiennes, s-d₁). Les transformations à l'origine des minéralisations, qui apparaissent au contact entre l'intrusion et son encaissant, sont exposées dans le paragraphe 2.5.2.2.

À plus de 25 mètres du contact de l'intrusion de granodiorite, les transformations sont seulement isochimiques avec les zonations suivantes (Winkler, 1976; Derré, 1978; Figure 15):

- Une auréole externe, correspondant à des cornéennes à albite-épidote, qui s'étendent jusqu'à 6 km de la granodiorite affleurante sur une bande d'allongement E-W, avec une zone à chlorite très étendue et une zone plus restreinte marquée par la présence de biotite et de trémolite-actinote ;
- Une auréole interne d'une cinquantaine de mètres de largeur correspondant à un faciès de cornéennes à hornblende.

Figure 15 - Enveloppe du métamophisme de contact associé à la mise en place de la granodiorite du Pic de la Fourque (extrait de Derré, 1983)

La persistance des roches affectées par le métamorphisme de contact vers l'ouest en direction du Port de Salau a poussé certains auteurs à émettre l'hypothèse de la présence de plusieurs apex cachés de granodiorite (Figures 15 et 16).

Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)

Aspects lithogéochimiques

Sur le plan de la composition chimique, Kaelin (1982) a montré des variations significatives en éléments majeurs (SiO₂, Al₂O₃, Na₂O, MgO) entre les différentes lithologies du Dévonien Sud. La présence de minéralisations pourra aussi se manifester par des anomalies polymétalliques locales. Les quelques données existantes pour les éléments en trace (Derré, inconnu) semblent ainsi montrer des teneurs contrastées (Tableau 5).

Les schistes noirs du Silurien (s₁₋₃) notamment avec la présence notable de pyrite disséminée, montrent des concentrations assez élevées pour l'ensemble des métaux analysés. Le pH pourrait être aussi modifié localement en aval et l'on peut s'attendre à la présence d'arsenic (non analysé par C. Derré). Les pélites bleutées sont caractérisées par les plus fortes teneurs en zinc et chrome, alors que la formation d'Evol au sud, qui présente elle-aussi des niveaux riches en sulfures, possède une signature similaire mais moins marquée.

Les roches magmatiques, dont l'étendue d'affleurement est assez restreinte, ne devraient pas avoir d'impact significatif sur le fond géochimique.

	Pb	Zn	Cu	Ni	Cr
Pélites bleutés (d ₃₋₄)	19	123	2	43	144
Calcaire de Salau (d ₂₋₃)	7	13	4	10	15
Alternance schisto-calcaires					
(barégiennes, s-d₁)	11	43	30	28	86
Alternances schisto-gréseuses					
(Evol, k ₁₋₃)	16	97	32	36	98
Schistes noirs du Silurien (s ₁₋₃)	34	62.5	35.5	33.5	153

 Tableau 5 - Concentrations moyennes (en ppm) de quelques éléments en trace

 pour des lithologies encaissantes du gisement de Salau (extrait de Derré, inconnu)

2.5.2 Cadre gîtologique et métallogénique

2.5.2.1 Typologie des minéralisations rencontrées

Les minéralisations rencontrées dans le secteur du Pic de la Fourque correspondent principalement à deux modèles métallogéniques appartenant aux skarns à tungstène et aux amas sulfurés à Pb/Zn de type SEDEX. Les paragraphes suivants présentent rapidement quelques notions générales à propos de ces deux types de gisements.

Les minéralisations de type skarn

Les skarns sont formés par la transformation de calcaires et/ou dolomies par diffusion de fluides au contact de granitoïdes intrusifs dans ces formations carbonatées. Ils sont donc principalement constitués de silicates calciques (grenat, pyroxènes). Les skarns se forment en trois grandes étapes qui se superposent : l'étape thermométamorphique correspond à la mise en place de l'intrusion et à la déshydratation des formations encaissantes.

La classification actuelle reconnait 7 types de skarn selon la substance économique principale : à fer, à cuivre, à zinc, à tungstène, à étain, à molybdène, à or (Meinert *et al.*, 2005). Les skarns du Pic de la Fourque correspondent ainsi au type à tungstène.

La morphologie des skarns est extrêmement variable (Figure 17). Elle dépend en effet de la géométrie de l'intrusion, de la géométrie des couches carbonatées, du type de déformation/fracturation relié à la profondeur de mise en place et enfin des volumes de fluides en circulation relié au régime thermique. Deux types de skarns ont été distingués d'un point de vue pétrographique sur le gisement de Salau (Soler, 1980b) :

- les skarns massifs, représentant plus de 95% des skarns avec des teneurs en WO₃ de l'ordre de 0,2 à 0,3% (non économique à l'époque de l'exploitation) ;
- les skarns zonés illustrés par la Figure 17, correspondant à une organisation symétrique en zones mono- à bi-minérale développées en veines de puissances millimétriques à décimétriques dans les marbres graphiteux.

Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)

Les minéralisations de type SEDEX (« Sedimentary Exhalative »)

Les minéralisations de type Sedex, pour « Sedimentary Exhalative » correspondent à des amas sulfurés qui se mettent en place dans des environnements de rifting continentaux, dans des bassins intracratoniques ou au niveau des marges continentales passives (Figure 18, Leach *et al.*, 2005). Les fluides circulent profondément dans les formations sédimentaires et se chargent progressivement en métaux qui sont transportés dans des saumures sous forme de complexes principalement chlorurés.

L'encaissant est généralement de type carbonaté ou dans des séries de schistes, siltites ou argilites. La minéralisation est généralement stratiforme, mais des remobilisations postérieures peuvent entraîner la formation de minéralisations sécantes.

(1) Minéralisation de type SEDEX proche de l'évent

(2) Minéralisation de type SEDEX distante de l'évent

Figure 18 - Modèle métallogénique schématique pour les minéralisations de type Sedex (tiré de <u>http://www.cocorel.com/</u>)

Les minéralisations sont généralement dominées par la sphalérite et la galène, auxquelles peut parfois être associée la barytine voire des minéraux cuprifères.
2.5.2.2 Le skarn à tungstène du Pic de la Fourque

Les travaux d'explorations puis miniers ont mis en évidence l'existence de skarns minéralisés répartis sur le pourtour de l'intrusion de granodiorite du Pic de la Fourque (Figure 19).

D'après Derré *et al.* (1983), deux ensembles d'encaissants minéralisés peuvent être distingués :

1/ dans les cornéennes calciques à diopside, idocrase et qui proviennent du métamorphisme de contact des alternances calcaires-shales.

2/ dans les calcaires gris et blanc (calcaire de Salau ou de la base de la série carbonatée).

Trois types de minéralisations sont distingués :

<u>Le premier type de minéralisation</u> (Fonteilles *et al.*, 1989) est caractérisé par la présence de quartz et scheelite (avec des teneurs allant de 0,7 à 2,5% de WO_3 , pour une teneur moyenne de 1%) avec arsénopyrite et pyrrhotite. Ce type est présent uniquement dans la partie sudest de l'amas Véronique (Figure 20), au sud de la faille Véronique et dans une zone mylonitique. Il a été exploité entre les niveaux 1430 et 1486.

<u>Le second type de minerais</u> consiste en de la pyrrhotite massive avec du quartz et enrichi en scheelite. Il correspond à la formation sud, la partie sud du Bois d'Anglade et l'amas Véronique sud-est (Figure 20).

<u>Le troisième type</u> correspond à une minéralisation diffuse au sein des cornéennes calciques en pyrrhotite avec scheelite et la présence de minéraux résiduels des skarns. Il comprend une partie des minéralisations du Bois d'Anglade, la colonne S.C. ainsi que l'amas Véronique W.

Ces minéralisations résultent de la succession de plusieurs stades de métasomatoses (Derré *et al.*, 1983 ; Fonteilles *et al.*, 1989) :

- un stade précoce caractérisé par des silicates de HT (500 à 540 °C) avec hedenbergite et grossulaire associés à scheelite et pyrrhotite disséminées. Les teneurs associées ne sont pas économiques;
- un stade d'altération hydrothermale à plus basse température (≈450°C) marqué par des silicates hydroxylés comme amphibole ferrifère, biotite et épidote et abondante scheelite et sulfures, principalement la pyrrhotite.

1 : Formation d'Evol indifférenciée; 2 : Calcaire noir à crinoïdes dévonien inf.; 3 : Unité Barrégiennes silto-carbonatée;

4 : Calcaire de Salau Praguien - Emsien inf. (dévonien); 5 : Pélite bleuté Eifélien (dévonien); 6 : Granodiorite à bt et hb de la Fourque; 7 : Sills et dykes de microgranitoïde; 8 : Quaternaire; 9 : Skarns à scheelite.

Figure 19 - Carte géologique simplifiée du secteur du Pic de la Fourque

et localisation des skarns à scheelite (d'après Fonteilles, 1989)

Figure 20 - Coupe simplifiée du Pic de la Fourque et de la mine de Salau (d'après Fonteilles, 1989)

Le contrôle structural est majeur pour la mise en place des minéralisations (Ledru, 1984 ; Ledru & Autran, 1987 et références incluses) : la circulation des fluides issus de la granodiorite profonde s'est réalisée dans l'apex granodioritique le long de fractures précoces et d'une zone de cisaillement subverticale. Ces structures ont constitué le principal piège pour le dépôt de la minéralisation.

La structure plissée de l'encaissant carbonaté a aussi un contrôle fort sur la localisation des minéralisations.

Ces deux types de contrôle structuraux ont ainsi entraîné une répartition complexe, sous forme de colonnes, lentilles et de « golfes » (Figure 21).

Les indices de surface peuvent avoir une signature géochimique plus ou moins locale suivant l'ampleur de leur extension, qui demeure généralement assez faible.

La présence de failles, des travaux miniers et l'existence d'un système karstique au sein des calcaires de Salau peuvent constituer des drains mettant en contact les eaux souterraines avec les minéralisations.

Les éléments métalliques et métalloïdes pouvant être marqueurs de ces possibles interactions sont fortement dépendants de la minéralogie de la minéralisation.

Figure 21 - Exemple de morphologie en colonne et lentilles des skarns du Pic de la Fourque (extrait de Soler, 1980a)

Le contenu minéralogique de la minéralisation est ainsi très varié (Tableau 1 de l'annexe 2), mais la pyrrhotite domine très largement. L'arsénopyrite, la chalcopyrite, la pyrite, la scheelite et la sphalérite sont aussi fréquentes. La plupart de ces sulfures sont cependant liés à la pyrrhotite d'un point de vue textural et génétique.

L'abondance de la pyrrhotite, hautement réactive et acidogène, permet d'envisager des interactions fortes avec les eaux météoriques au niveau des stockages des stériles et résidus de traitement (Plat des Pommiers, carreau de la mine à 1230 m et différents niveaux du Bois d'Anglade). La paragenèse carbonatée entraîne vraisemblablement un drainage tamponné neutre, mais qui pourrait se révéler plus acidogène suivant la répartition hétérogène des composés des résidus.

Le contenu en éléments traces de la pyrrhotite des minéralisations de Salau n'est a priori pas connu (du moins, n'a pas été publié). Si l'on se réfère à la composition minéralogique et au contexte général, il est cependant possible d'envisager la présence d'As, Bi, Co, Ni.

À la vue du contenu minéralogique de la minéralisation, nous retiendrons donc As, Bi, Co, Cu, Ni, W comme métaux typiques de sa signature géochimique.

D'après Boulmier (1984, 1985), de l'actinolite fibreuse est identifiée dans les cornéennes et skarns du gisement de Salau. Celle-ci proviendrait de l'altération rétrograde de l'hédenbergite. Elle est très souvent associée à la pyrrhotite. Les archives minières de la Société des Mines d'Anglade font état dans de nombreux levés géologiques et logs de sondage de la présence d'amiante. Celle-ci se présente dans des veines et filonnets au sein des skarnoïdes (DV 498 Lever géologique Couronne au 1/100^e) ou dans les niveaux de calcaires rubanés ou siliceux. Des amas à quartz + calcite + pyrrhotite + asbeste de 30 cm de large par 275 cm de longueur visible ont ainsi été décrits.

2.5.2.3 Minéralisations de Saubé et Hoque-Rabé

Les minéralisations, principalement à sphalérite et galène, sont observées dans les alternances schisto-carbonatées (d_1) et dans les premiers niveaux dolomitiques peu épais situés à 200 mètres environs sous les alternances schisto-carbonatées, au sommet des pélites bleutées (d_{3-4}) (Prouhet *et al.*, 1965).

Les indices de Hoque-Rabé se situent dans un petit niveau calc-schisteux, de 0,5 à 6 mètres de puissance et séparé de la masse principale de calc-schistes par 20 à 70 mètres de schistes satinés (Figure 22).

Les teneurs observées dans le secteur de Hoque-Rabé sont généralement assez faibles, allant de 0,05 à 1,4% pour le plomb et 2,1 à 7,9% pour le zinc sur des puissances n'excédant pas 3,6 m.

Les indices de Saubé sont localisés au sein de deux bancs dolomitiques de quelques mètres de puissance et inclus dans les phyllades, ces deux bancs étant eux-mêmes séparés par 20 à 30 m de celles-ci. Les teneurs peuvent être plus importantes, un échantillon ayant donné 25,5% de zinc et 1,8% de plomb sur 1,9 m de minéralisations (Prouhet *et al.*, 1965), mais les teneurs sont plus généralement inférieures à 1% pour le plomb et 10% pour le zinc (Calvet, 1966).

Selon Charuau (1974), les affleurements minéralisés se répartissent de la manière suivante :

- au niveau des anciennes galeries de Saubé (altitude de 1910 m), minéralisation très altérée se suivant par intermittence en surface, pratiquement jusqu'à la ligne de crête (Pic des Maurets, 2262 m) dans les tranchées de recherche ;
- en contrebas, à hauteur des anciens travaux de Hoque-Rabé (altitude de 1310 m), visible en subsurface sur une longueur de 400 m (jusqu'à la cote 1430 m) ;
- en bordure de la route menant à la mine d'Anglade, 100 m avant le relais de télévision, la minéralisation est présente en minces filets dans des cipolins.

Figure 22 - Localisations des minéralisations affleurantes des secteurs de Hoque-Rabé et Saubé (d'après Charuau, 1974)

La roche encaissante est équivalente à celle du gisement de Carboire (Charuau, 1974).

La gangue est principalement composée de quartz, carbonates et calcite noire. Les minéralisations peuvent présenter une diversité minéralogique assez importante, malgré leur faible extension (Tableau 2 de l'annexe 2). Ce contexte laisse envisager la présence de Zn, Pb, Cu, Ni, As et éventuellement Co comme marqueurs potentiels des minéralisations.

2.5.3 Données issues de l'Inventaire Minier et des travaux de prospection du BRGM

2.5.3.1 Interprétation des données géochimiques existantes

Dans le cadre de l'Inventaire Minier métropolitain, le BRGM a acquis entre les années 1975 et 1985 des données géochimiques à une échelle stratégique généralement de 2 à 3 échantillons par km² en sédiments de ruisseaux.

Pour la feuille 1074 (Saint Girons), les analyses ont été réalisées en ICP (spectrométrie d'émission à plasma induit) et absorption atomique pour l'or, et dateraient de 1990 (Figure 23).

Pour la feuille 1086 (Aulus les Bains), les analyses sont antérieures à 1990 et ont été réalisées par la méthode DCP (spectrométrie d'émission à plasma conductif), qui fournit 22 éléments.

Figure 23 - Méthodes analytiques utilisées pendant l'Inventaire minier pour la zone d'étude

Des échantillons de sol et de sédiments de fond de vallon ont été prélevés (Figure 24). Les seuils analytiques connus pour la méthode DCP sont présentés dans le Tableau 6.

Figure 24 - Matériel prélevé pour analyse géochimique dans le cadre de l'Inventaire minier

	Ag	As	Cu	Sb	Cd	Ni	Со	Cr	Nb	В	Sn	Мо	W	Be
Seuil de détection (en ppm)	0.2	20	10	20	2	10	10	10	10	10	20	2	10	2

Tableau 6 - Eléments analysés et leurs seuils de détection pour la méthode DCP (les seuils de Fe2X, MnO, P₂O₅, Pb, Zn et V ne sont pas connus)

Les résultats sur les prélèvements de sédiments et de sols sont présentés séparément.

Géochimie des sédiments de fond de vallon

Les sédiments de fond de vallon prélevés sur les formations crétacées du fossé d'Aulus semblent être relativement pauvres en fer, alors que les pélites bleues (d_{3-4}) semblent sensiblement plus riches (Figure 25). MnO est corrélé au sommet de la série du Dévonien Nord (Figure 26), tout comme P_2O_5 . Hormis une très forte concentration anomale au niveau du Moulin Lanta, le plomb présente des valeurs fortes dans le secteur des minéralisations de Hoque Rabé et Saubé (Figure 27), qui ne semblent pas bien soulignées par le zinc (Figure 28). Cependant, les alternances schisto-carbonatées (d_1) dessinent un fond lithogéochimique plus élevé. Le cuivre marque bien les schistes noirs du Silurien (s_{1-3}), tout comme le nickel (Figure 29) et le chrome, alors que l'arsenic ne parait pas corrélé avec une lithologie ou minéralisation particulière. Le tungstène est présent en aval immédiat des minéralisations du Pic de la Fourque.

Figure 25 - Répartition du fer dans les sédiments de fond de vallon (données de l'Inventaire minier)

Figure 26 - Répartition du manganèse dans les sédiments de fond de vallon (données de l'Inventaire minier)

Figure 27 - Répartition du plomb dans les sédiments de fond de vallon (données de l'Inventaire minier)

Figure 28 - Répartition du zinc dans les sédiments de fond de vallon (données de l'Inventaire minier)

Figure 29 - Répartition du nickel dans les sédiments de fond de vallon (données de l'Inventaire minier)

Géochimie des sols

En géochimie sol, le zinc marque bien les alternances schisto-carbonatées (d1) (Figure 30). Pour le plomb, les plus fortes valeurs se localisent à proximité des indices de Hoque Rabe et Saubé (comme pour les échantillons de sédiments de fond de vallon) et les concentrations sont assez basses à proximité des schistes noirs du Silurien (s_{1-3}) (Figure 31).

L'arsenic montre une distribution similaire, avec l'ajout de fortes concentrations qui sembleraient aussi corrélées aux calcaires amygdalaires (d_{5-7}) (Figure 32).

Les formations carbonifères du secteur du Pont de la Taule semblent significativement plus riches en cuivre (Figure 33).

Figure 30 - Répartition du zinc dans les sols (données de l'Inventaire minier)

Figure 31 - Répartition du plomb dans les sols (données de l'Inventaire minier)

Figure 32 - Répartition de l'arsenic dans les sols (données de l'Inventaire minier)

Figure 33 - Répartition du cuivre dans les sols (données de l'Inventaire minier)

2.6 Contexte minier et étude historique

Les données collectées sur les concessions du Pic de la Fourque et de Saubé sont en grande partie issues des archives de la DREAL-Occitanie à Toulouse et du BRGM. à Orléans. Cependant, d'autres archives minières ont dû être consultées, notamment aux Archives Départementales de l'Ariège et à l'Unité interdépartementale de la Haute Garonne - Ariège de la DREAL. Elles ont permis de compléter ces informations. Les scans des principaux documents consultés au niveau des archives de la DREAL et des archives départementales sont fournis en annexe 1. Les scans des archives de la Société Minière d'Anglade (SMA) situées au BRGM ne sont pas joints à cette annexe. Ces documents sont en effet détenus par le BRGM pour le compte d'un tiers en vertu d'un contrat de droit privé et ne sont pas diffusables.

2.6.1 Pic de la Fourque : des travaux de recherche jusqu'à l'exploitation de la mine

Le Tableau 7 présente les principaux faits et dates qui ont marqué l'histoire de la concession du Pic de la Fourque.

1955	Découverte du premier gite de skarns à scheelite des Pyrénées (Costabonne) par le
	BRGM dans les Pyrénées orientales. Sa découverte a, par la suite, permis de
	focaliser l'attention sur le petit massif granodioritique de Salau.
1959	Découverte des premiers indices de skarns par la Division Minière Sud-Ouest du
	BRGM.
1960	Découverte des premiers indices de cornéennes et de sulfures minéralisés en
	scheelite par une première campagne de prospection du BRGM.
1960-1963	Réalisation d'une étude géologique (prospection au marteau assortie de
	décapages) et de campagnes de sondages qui ont permis d'évaluer le potentiel
	d'exploitation du gisement. Création du syndicat de recherche constitué du
	B.R.G.M., de l'Omnium des Mines et de la Compagnie Métallurgique et Minière.
1964-1967	Réalisation de travaux miniers, de sondages complémentaires et définition du
	potentiel exploitable du gisement.
26 août 1965	Octroi par décret du Permis Exclusif de Recherche (PER) de Salau au BRGM
	concernant le tungstène, bismuth, cuivre, or, argent, et substances connexes sur
	une superficie de 3,4 km ² environ et sur une durée de trois ans.
3 octobre 1967	Décision d'exploitation entraînant la création de la Société Minière d'Anglade.
1967-1970	Mise en place des infrastructures destinées à permettre l'exploitation du gisement
	de Salau suite à l'autorisation par arrêté de permis de construire n°23.687.
19 août 1968	Transformation du PER d'Août 1965 en Permis d'Exploitation (PEX) dit « Pic de la
	Fourque », octroyé pour 5 ans, sur une superficie de 4.2 km ² après mutation au
	profit de la SMA, par arrêté du 19 Août 1968.
23 novembre 1968	Octroi d'un PER sur une surface de 8,2 km ² , dit « Permis d'Anglade » pour une
	période de 3 ans et contiguë au permis du Pic de la Fourque.
Juillet 1969	Début des travaux préparatoires dans le gisement.
Novembre 1970	Mise en route de l'usine de traitement du minerai.
Avril 1971	Démarrage de la production minière.
30 mars 1972	Première demande de concession par pétition (refusée).
Année 1973	Augmentation de la production de la laverie passant à 12 t/h.
17 janvier 1974	Prorogation du permis d'Anglade du 23 Novembre 1968 sur une surface de 2,7 km ²
	pour une période de 3 ans.
24 mai 1974	Prorogation du PEX du 19 Août 1968 sur une surface de 4,2 km ² jusqu'au 24 août
	1978.
4 février 1976	Découverte du gisement Véronique.
24 octobre 1978	Prorogation du <i>PEX du 24 Mai 1974</i> dit « Pic de la Fourque » jusqu'au 24 août 1983.

Note 1973 Facte control is a place to summer a logate of caccel de S ha) dans le cadre 9 octobre 1980 Octroi par décret d'un PER de mines de tungstène, étain et substances connexes, dit « Permis de Ferrières », à la SMA. 19 mai 1983 Arrêté prorogeant le PEX de mines de tungstène, bismuth, cuivre, or et substances connexes dit « Permis du Pic de la Fourque » jusqu'à ce qu'il soit statué sur la demande en concession. Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et debut de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986 Arrêt de l'exploitation de la mine de Salau. Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai e tijllet 1986 (donant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1220. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au nivea une de valau de concassage du niveau 1304, à l'étage 1430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fúts contenant des résidus de filtrat	Août 1979	Arrêté autorisant la Société Minière d'Anglade à établir un dénôt de résidus de
a réglementation ICPE. 9 octobre 1980 Octroi par décret d'un PER de mines de tungstène, étain et substances connexes, dit « Permis de Farrières », à la SMA. 19 mai 1983 Arrêté prorogeant le PEX de mines de tungstène, bismuth, cuivre, or et substances connexes dit « Permis de l'arrières », à la SMA. 19 mai 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque su une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Octroi par décret de la concession du Pic de la Fourque su une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre contenant une teneur en tungsten intéressante, 24 des 25 fûts on téré artiétés à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, jatrasformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de té stockés en divers endroits à l'Intérieur et la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et au magasin. Année 1987 Réaménagement des devus terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intétieures.	Addt 1979	laverie au lieu-dit « Plat des Pommiere » (canacité d'accueil de 5 ha) dans le cadre
Doctobre 1980 Octro par décret d'un PER de mines de tungstène, étain et substances connexes, dit « Permis de Ferrières », à la SMA. 19 mai 1983 Arrêté prorogeant Le PEX de mines de tungstène, bismuth, cuivre, or et substances connexes dit « Permis du PIc de la Fourque » jusqu'à ce qu'il soit statué sur la demande en concession. Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du PIC de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance de la socitét E.T.P. Grenoble (Socité EUROTINCENTE POURDES à Grenobart de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Arlège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 200, à l'unité de concassage du niveau 1 304, à l'étage 1430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230. d'fage 1430 et au magasin. Année 1987 Réaménagement des dexictiva u 130 ous la s		de la réglementation ICDE
9 october 1560 October 147 19 mai 1983 Arrêté prorogeant le PEX de mines de tungsteine, bismuth, cuivre, or et substances connexes dit × Permis du Pic de la Fourque » jusqu'à ce qu'il soit statué sur la demande en concession. Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroin par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures difermeture progressive de l'essentiel des galaries supérieures. En avril 1986, récettion de 25 foits contenant des résidus defiltre en provenance de la société ETP. Grenoble (Société EUROTUNGSTEME POUDRES à Grenoble où étaient traités les concentes de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungsten intéressante, 24 de 32 foits on été ertaités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En avril 1986, récettion de 25 fidts onterparts du la lavre de la mine de salau. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (bous) en provenance de la société ETP. Grenoble ou té és tockés en dives endroits à l'Intérieur el a mine de Salau entre un au terau du jour, de la lavrei et du compresser und univeau 1 320, à l'unité de concessage du niveau 1 320. En périndetre de la la serrei e	0 actobro 1080	Octroi par dégret d'un DED de mines de tungetère, étain et substances conneves
In the Permis during the PEX de mines de tungstène, bismuth, cuivre, or et substances connexes dit « Permis du Pic de la Fourque » jusqu'à ce qu'il soit statué sur la demande en concession. Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et d'ont le périmère est i dentique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre on provenance de la société ELT.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où étaient traités les concentrés de scheel te de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des résidus de filtration (boues) en provenance de la société ELT.P. Grenoble on été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R601 yést occupée de l'élimination de PCB liquides : 31 fûts contenant 9820 kg de PCB au total ont dét éliminés). Cette destruction a été réalisée au centre du terril du carreau 1230 souis auriteila la surale de baratée de la société SERMIP. S'est contagée de la	9 OCTOBRE 1980	dit « Dormis de Forrières » à la SMA
19 mai 1993 Arrete prorogeant te PEX de mines de umgsteine, bismuth, culvré, of resubstances connexes dit « Permis du Pic de la Fourque » jusqu'a ce qu'il soit statué sur la demande en concession. 30 décembre 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1986 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrét de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, fecteption de 25 fûts contenant des résidus de filtre en provenance de la société ET.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble coù étaient traités les concentrés de scheelit de Estalu). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 12.0. En juillet 1986, Jornateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie t du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement de de situx terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société ET.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond d	10	uit « Permis de Permeres », a la sivia.
Connects off « Perms du Pic de la Fourque » Jusqua de qui il Soft statue sur la demande en concession. Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance de la société ELP. Grenoble (Société EUROTINOSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1430 et au magasin. Année 1987 Réaménagement des vésidus de filtration (boues) en provenance de la société ELP. P. Grenoble ont été stockés en divers endroits à l'Intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1988 Réaménagement du terril du carreau 1 230 souls a surveillance de la DRIRE' dans le cadre de la mise en sécurité ses secties faisant foi de cartificat de destruction du fresures subckés en 19	19 mai 1983	Arrete prorogeant le PEX de mines de tungstene, bismuth, cuivre, or et substances
Année 1985 Construction d'un barrage dans le ruisseau du Cougnets. 30 décembre 1985 Octroi par décret de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au pernis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance de la société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble ou étaient traités les concentrés de scheelit de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet, fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société tes los société realisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01). Au tat 275 fûts étaient ainsi stockés en lavest été industriel s'aisant foid certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ² dans le cadre de la mise en sécurité du si		connexes dit « Permis du Pic de la Fourque » jusqu'à ce qu'il solt statue sur la
Année 1985 Construction d'un dur darge dans le ruisseur du cougnets. 30 décembre 1985 Octroi par décrite de la concession du Pic de la Fourque sur une période de 25 ans et dont le périmètre est identique au permis du Pic de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 füts contenant des résidus de filtre en provenance de la société ET.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 füts ont dér étraités à Salau entre mai et juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 a04, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures Intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1988 Réaménagement du terril du carreau 1230 sous la surveillance de la DRIRE' dans le cadre de la mise en sécurité du site. Année 1990 Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'	Année 1005	Construction d'un horne on de se la mission du Course ste
30 decembre 1955 Octrol par decret de la concession du PIC de la Fourque. Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été rétraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange 12 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (bous) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1988 Réaménagement du terril du carreau 1230 sous la surveillance de la DRIRE [*] dans le cadre de la mise en sécurité du site statent de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1230 sous la surveillance de la DRIRE [*] dans le cadre de la mise en sécurité du site industriels ainsi que les certificats de destruction a ét é réalisée au centre de traitement de Salau fice inconterat de suivi de déchet industri	Annee 1985	Construction d'un barrage dans le ruisseau du Cougnets.
Année 1986 Arrêt de l'exploitation de la mine de Salau et début de mise en sécurité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, féception de 25 fúts contenant des résidus de filtre en provenance de la société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstème intéressante, 24 des 25 fúts ont dér étaraités à Salau entre mai et juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total on tété éliminés). Cette destruction. Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ² dans le cadre de la mise en sécurité du site. Année 1990 En lèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction. du pyralène par les entreprises spécialisées TARDI et SEAMIP. Année 1990 Enlèvement et destauction des prodeuts chimiques restant par l	30 decembre 1985	Octroi par decret de la concession du Pic de la Fourque sur une periode de 25 ans
Année 1986 Arrêt de l'exploitation de la mine de Salau et debut de mise en securité du site. Démontage des infrastructures intérieures et fermeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance de la société. ET-P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en laver du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ains i tockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été distinés. Cette destruction a été réalisée au centre de traitement de Saint-Vubas (LAONIEU, O1), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la su		et dont le perimetre est identique au permis du Pic de la Fourque.
Demontage des infrastructures interieures et termeture progressive de l'essentiel des galeries supérieures. En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance de la société E.T.P. Grenoble (Société EUROTUNOSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'Intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total on tété éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site. Année 1990 Enlèvement et destruction	Annee 1986	Arret de l'exploitation de la mine de Salau et debut de mise en securite du site.
des galeries superieures.En avril 1986, réception de 25 fûts contenant des résidus de filtre en provenance dela société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble oùétaient traités les concentrés de scheelite de Salau, Ces résidus de filtre contenantune teneur en tungstien intéressante, 24 des 25 fûts con tété retraités à Salau entremai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fondde galerie 1230.En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège(6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau ducarreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité deconcassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation desinfrastructures intérieures.Des fûts contenant des résidus de filtration (boues) en provenance de la sociétéE.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau(recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûtsétaient ainsi stockés en 1987.En juin 1987. Ja sociét TREDI s'est occupée de l'élimination de PCB liquides : 31fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a étéréalisée au centre de traitement de Saint-Vulbas (L4GNEU, 01), en atteste lebordereau de suivi des déchets industries faisant foi de certificat de destruction de1990Enlèvement et destruction des produits chimiques restant par l'entrepriseSEARMIP. Durant l'été 1990, la société ESARMIP s'est chargée de		Demontage des infrastructures interieures et fermeture progressive de l'essentiel
En avril 1986, reception de 25 tuts contenant des residus derifite en provenance de la société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 füts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (G en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site. Année 1990 Enlévement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction du p		des galeries superieures.
Ia société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble ou étaient traités les concentrés de schedilet de Salau). Ces résidus de filtre contenant une teneur en tungstène intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'uité de concassage du niveau 1 304, à l'étage 1 430 et au magasin. Année 1987 Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site. Année 1990 Enièvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant du seurs produits de laboratoire, et.)		En avril 1986, reception de 25 futs contenant des residus de filtre en provenance de
Etaient traités les concentrés de scheelite de Salau). Ces résulus de filtre contenant une teneur en tungstème intéressante, 24 des 25 fûts ont été retraités à Salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230. En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des linfrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁺ dans le carte de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potase, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que		la société E.T.P. Grenoble (Société EUROTUNGSTENE POUDRES à Grenoble où
Ine teneur en tungstene intéressante, 24 dez 25 futs ont étertraites à salau entre mai et juillet 1986 (donnant 1,5 tonnes de WO ₃). Le fût restant a été stocké en fond de galerie 1230.En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'Intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimique (kanthat de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction dum atériel de la SMA.Année 1991<		étaient traités les concentrés de scheelite de Salau). Ces résidus de filtre contenant
mai et juillet 1986 (donnant 1,5 tonnes de WO3). Le fût restant a été stocké en fond de galerie 1230.En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereau de suivi de déchets industriels ainsi que les certificats de destruction de a féalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargé		une teneur en tungstère intéressante, 24 des 25 fûts ont été retraités à Salau entre
En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège (6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction. Z9 juin 1988Z9 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant d'ures produits chimiques (xanthate de potase, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereau de suivi de déchets industriels ainsi que les certificats de destruction due a SIRMIP.Année 1991Vidange de 6 transformateurs et évacuation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la miné du fait d'émanations toxiques au sein de cette déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la miné du fait d'émanations to		mai et juillet 1986 (donnant 1,5 tonnes de WO_3). Le fût restant a été stocké en fond de galerie 1230
(6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étai ent ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEAMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle		En juillet 1986, 9 transformateurs aux PCB sont déclarés à la Préfecture de l'Ariège
Carreau du jour, de la laverie et du compresseur du niveau 1 230, à l'unité de concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 osus la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de Gondensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'		(6 en service, 1 de rechange et 2 hors-service). Ils sont localisés au niveau du
Concassage du niveau 1 304, à l'étage 1 430 et au magasin.Année 1987Réaménagement des deux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ains i stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potases, esls minéraux résiduaires, sulfate d'alumine et decuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 tondensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du		carreau du jour de la laverie et du compresseur du niveau 1 230 à l'unité de
Année 1987Réaménagement des d'eux terrils par l'entreprise Malet ; fin de l'évacuation des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (L4GNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise du démontage et de 		concassage du niveau 1 304 à l'étage 1 430 et au magasin
Année 1997Indentingenit des destructions part tendeprise induct , in de l'endedador des infrastructures intérieures. Des fûts contenant des résidus de filtration (boues) en provenance de la société E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE [®] dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la p	Δημέρ 1987	Réaménagement des deux terrils par l'entreprise Malet : fin de l'évacuation des
InterstereDes fits contenant des résidus de filtration (boues) en provenance de la sociétéE.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987.En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs	Annee 1907	infrastructures intérieures
 E.T.P. Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau (recoupe R3, R5 et R6 du niveau 1 230 et fond de la galerie). Au total 275 fûts étaient ainsi stockés en 1987. En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction. 29 juin 1988 Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE⁵ dans le cadre de la mise en sécurité du site. Année 1990 Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA. Année 1991 Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP. Année 1992 Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue. 1993-1996 Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes). <li< td=""><td></td><td>Des fûts contenant des résidus de filtration (houes) en provenance de la société</td></li<>		Des fûts contenant des résidus de filtration (houes) en provenance de la société
In a circulation of the stockes of uncers character of the stockes of uncers of		ETP Grenoble ont été stockés en divers endroits à l'intérieur de la mine de Salau
Année 1990En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31 fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyage de galeries réouvertes).Automne 1996Foudroyage des entrée		(recourse R3, R5 et R6 du niveau 1,230 et fond de la galerie) Au total 275 fûts
En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31fûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a été réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de		étaient ainsi stockés en 1987
fuil son tenor 19 820 kg de PCB au total ont été élimination de reb minute robfûts contenant 9 820 kg de PCB au total ont été éliminés). Cette destruction a étéréalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des en		En juin 1987, la société TREDI s'est occupée de l'élimination de PCB liquides : 31
India Contentit 9 020 kg de l'eb da total intere de statiotion a tele réalisée au centre de traitement de Saint-Vulbas (LAGNIEU, 01), en atteste le bordereau de suivi des déchets industriels faisant foi de certificat de destruction.29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		fûts contenant 9.820 kg de PCB au total ont été éliminés). Cette destruction a été
Provinse de centre de dentienent de sonne volus (pedinte), etc), etc), etc, periodite te29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		réalisée au centre de traitement de Saint-Vulhas (LAGNIELL 01) en atteste le
29 juin 1988Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le cadre de la mise en sécurité du site.Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		hordereau de suivi des déchets industriels faisant foi de certificat de destruction
25 Jam 1990Include Child Control of ControlAnnée 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et	29 juin 1988	Réaménagement du terril du carreau 1 230 sous la surveillance de la DRIRE ⁵ dans le
Année 1990Enlèvement et destruction des produits chimiques restant par l'entreprise SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).	25 juii 1900	cadre de la mise en sécurité du site.
SEARMIP. Durant l'été 1990, la société SEARMIP s'est chargée de la destruction de 10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et	Année 1990	Enlèvement et destruction des produits chimiques restant par l'entreprise
10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques (xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		SEARMIP. Durant l'été 1990. la société SEARMIP s'est chargée de la destruction de
(xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre, produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		10 fûts, 15 cartons et plus de 27 sacs contenant divers produits chimiques
produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		(xanthate de potasse, sels minéraux résiduaires, sulfate d'alumine et de cuivre,
industriels ainsi que les certificats de destruction du matériel de la SMA.Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		produits de laboratoire, etc.), en attestent les bordereaux de suivi de déchets
Année 1991Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction du pyralène par les entreprises spécialisées TARDI et SEARMIP.Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		industriels ainsi que les certificats de destruction du matériel de la SMA.
Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et	Année 1991	Vidange de 6 transformateurs et évacuation de 6 condensateurs avec destruction
Année 1992Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		du pyralène par les entreprises spécialisées TARDI et SEARMIP.
réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue. 1993-1996 Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes). Automne 1996 Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et	Année 1992	Fermeture de la galerie principale (carreau 1 230 m), tous ces travaux ont été
déposée auprès du Préfet par l'entreprise chargée du démontage et de l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		réalisés sous le contrôle et en concertation avec la DRIRE. Une plainte a été
I'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		déposée auprès du Préfet par l'entreprise chargée du démontage et de
dernière. Y est mentionné la présence de 6 transformateurs vidés mais non décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		l'évacuation du matériel de la mine du fait d'émanations toxiques au sein de cette
décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		dernière. Y est mentionné la présence de 6 transformateurs vidés mais non
difficultés d'évacuation de produits toxiques de composition inconnue.1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		décontaminés, de 6 condensateurs en tôle fine contenant du pyralène ainsi que des
1993-1996Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		difficultés d'évacuation de produits toxiques de composition inconnue.
galeries réouvertes).Automne 1996Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et	1993-1996	Surveillance périodique du site et réalisation de travaux ponctuels (foudroyages de
Automne 1996 Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et		galeries réouvertes).
	Automne 1996	Foudroyage des entrées de toutes les galeries supérieures, nettoyage du site et

⁵ Les missions de la DRIRE sont aujourd'hui exercées par la DREAL.

	enlèvement d'un hangar métallique.
Fin 1996	Canalisation des eaux d'exhaure de la mine au moyen de buses en béton.
24 juin 1999	Arrêté préfectoral donnant acte à la SMA de l'arrêt définitif de travaux miniers et
	de la cessation d'utilisation d'installations minières situées sur la concession du Pic
	de la Fourque.
15 févri er 2000	Arrêté ministériel d'acceptation de la renonciation de la SMA à la concession du Pic
	de la Fourque.

Tableau 7 - Principaux faits et dates qui ont marqué l'historiquede la concession du Pic de la Fourque

Travaux de recherche

L'état des travaux miniers d'exploration réalisés depuis l'origine jusqu'à l'année 1983 était le suivant :

- 18 000 m de galeries ;
- 1 360 m de cheminées creusées en manuel ;
- 1745 m de cheminées « Alimak » ;
- 5 360 m de sondages carottés au jour ;
- 46 100 m de sondages carottés au fond ;
- 9 110 m de sondages percutants au fond ;
- 21 900 m³ de matériau provenant des terrassements de l'usine souterraine et des divers aménagements de la mine.

Au cours de l'année 1986, des sondages carottés ont montré que, au-delà des réserves prouvées à l'époque, le gisement restait « ouvert » tant latéralement (indices du nord-ouest) qu'en profondeur (aval de la colonne Véronique et indice du Roc de l'Aigle).

Octroi de la concession

La concession est instituée par le décret du 30 décembre 1985 pour des mines de tungstène, bismuth, cuivre, or et substances connexes, à la **Société Minière d'Anglade**, qui cessera son activité à la fin de l'année 1986. La cessation de son exploitation et la renonciation à la concession du Pic de la Fourque seront actées par l'arrêté préfectoral du 24 juin 1999 et l'arrêté ministériel du 15 février 2000. Les derniers travaux d'exploitation ont été réalisés au début de l'année 1987 et ont concerné l'indice d'or présent en aval du gisement Véronique.

Depuis cette date et jusqu'à la fin de l'année 1996, seuls des travaux de mise en sécurité du site minier ont été réalisés, sous le contrôle de la DRIRE, à la demande de la commune de Couflens et du ministère en charge de l'environnement.

Concession du Pic de la Fourque

La concession du Pic de la Fourque (Figure 34) est située sur la commune de Couflens. Son périmètre, délimité par le décret du 30 décembre 1985, correspond au polygone dont les sommets sont les suivants :

- A Pic de Quer Ner, point d'altitude 1903 m ;
- B Confluent du ruisseau du Mail et du ruisseau d'Estagnet Del Mail, point d'altitude 1353 m;
- C Arête sud-est de la grange, sise au lieu-dit Les Estartes, sur la parcelle n°363, section D, feuille n°2 du cadastre de Couflens ;
- D Arête sud-ouest de la grange, sise au lieu-dit Cougnets, sur la parcelle n°686, section D, feuille n°3 du cadastre de Couflens ;

 E – Point coté 1635 m, matérialisé par une borne en maçonnerie, située à 250 m environ au sud-sud-ouest de la cabane de Saubé.

Figure 34 - Carte de localisation des limites des permis successifs d'Anglade et de la concession du Pic de la Fourque

Travaux miniers et exploitation

De novembre 1970 (date de mise en marche de la laverie) à 1972, la mine est exploitée par chambres magasins dans les zones minéralisées à puissances comprises entre 2 m et 8 m. Les travaux s'effectuent alors par soutirage du foisonnement dans les recoupes des niveaux de base (espacés de 8 à 10 m) avec abandon sous formes de piliers des zones stériles définies préalablement par la reconnaissance du panneau. Les parties du gisement en lentilles puissantes et d'extension limitée, ainsi que les panneaux peu puissants présentant des lacunes importantes de minéralisations ont été exploités par chambres silésiennes. Le soutirage du foisonnement en cours d'abattage et la vidange de la chambre étaient assistés par des treuils de raclage installés dans le chantier.

Les travaux souterrains se sont organisés selon **6 niveaux principaux débouchant au jour** (coupes des Figures 35 et 36), à savoir :

- carreau 1 230 (avec installations de surface);
- niveau 1 320 ;
- carreau 1 430 (avec atelier à la surface) ;
- niveau 1 475 ;
- niveau 1 575 ;
- niveau 1 620.

Figure 35 - Coupe Nord-Sud schématique de l'infrastructure initiale du gisement

L'arrivée en 1970, sur le marché européen, de petits chargeurs transporteurs diesel à godet de 750 l, a permis dès 1972 de transformer totalement l'infrastructure de la mine et les méthodes de reconnaissance, de préparation et d'exploitation. En effet, cette innovation a permis de généraliser une méthode d'exploitation par sous-niveaux comme illustré sur la figure suivante.

Figure 36 - Coupe Nord-Sud schématique de l'infrastructure du gisement après mise en service des chargeurs transporteurs

Au total, la mine de Salau aura produit 960 000 tonnes de tout-venant dont 14 350 tonnes de tungstène au 1^{er} janvier 1987.

Fermeture et travaux de mise en sécurité

La fermeture de la mine de Salau s'est effectuée en décembre 1986 à la suite de la chute du cours du tungstène la même année, passant de 166 US\$ / 10 kg de WO3 à 50 US\$.

Les travaux de fermeture ont principalement concerné la fermeture par foudroyage des ouvrages débouchant au jour, le nettoyage du site et la stabilisation des terrils du carreau 1 230 et du « Plat des Pommiers ». Ils se sont déroulés à partir du printemps 1987 et jusqu'en 1991. La fin des travaux de mise en sécurité a été repoussée à novembre 1998 (date de visite du site par la Mairie de Couflens, un représentant de la SMA et la DRIRE

Midi-Pyrénées) où ont été enlevés les derniers éléments potentiellement polluants du site (pneus d'engin et bidons d'hydrocarbures).

Transport et traitement du minerai

Le transport du minerai s'est effectué par la mise en place d'un premier téléphérique installé entre les cotes 1 235 et 1 635 au mois de mai 1971 et par un second au mois de juin de la même année. Leur capacité de charge respective était de 1 500 kg et de 500 kg. Ils servaient à la fois au transport du personnel et du minerai.

En ce qui concerne le transport du minerai à l'intérieur même de la mine, celui-ci était assuré par des petits chargeurs-transporteurs diesel dans les galeries lors des travaux, par des wagons de 3000 L, par des accumulateurs puis par tapis roulant au niveau 1 320 (galerie de roulage) pour rejoindre l'unité de concassage.

Le procédé de traitement du minerai a évolué au cours de la phase d'exploitation de la mine, en effet, la scheelite qui se trouvait après broyage dans les éléments très fins échappait à la gravimétrie.

Initialement, le traitement était orienté principalement par séparation gravimétrique laissant une faible partie du minerai au traitement par flottation. Cependant, pour la raison évoquée plus haut, les installations de traitement ont dû être complètement transformées par étapes, en utilisant au maximum le matériel déjà en place tout en s'accommodant des dimensions immuables de l'excavation souterraine.

Le flow-sheet final illustré sur la Figure 37 a donc essentiellement été axé sur la flottation, la récupération gravimétrique, en « scalping » préalable en début de traitement, ne représentait que 28% du WO₃ entrant.

L'alimentation en eau de l'unité de traitement s'effectuait par captage du ruisseau du Fontaret (à la cote 1 287), en amont de l'usine EDF installée sur le ruisseau des Cougnets où l'eau résiduaire était rejetée en aval de la mine.

Toutefois, des problèmes d'impuretés ont également dû être résolus ; les concentrés de tablage contenaient de l'arsenic sous forme de mispickel qui a pu être éliminé par un petit circuit annexe de flottation. Les produits de ce traitement étaient ensuite séchés et les sulfures restants étaient éliminés par une séparatrice magnétique. Ces rejets qui titraient encore de 10 à 15% en WO₃ étaient réintroduits dans le circuit de flottation de la laverie.

Enfin les concentrés de flottation qui contenaient également un pourcentage élevé de phosphore provenant de l'apatite présente de façon irrégulière mais dans tout le gisement, a rendu nécessaire une lixiviation à l'acide nitrique. Ce procédé était exécuté dans un atelier extérieur construit spécialement en annexe de l'usine d'engrais de la COFAZ à SÈTE. Il permettait d'obtenir des concentrés ne contenant presque plus de phosphore et enrichis de manière importante par la dissolution d'une grande partie des carbonates contenus dans les concentrés de flottation.

L'usine de traitement de la mine de Salau était composée de six sections :

- L'atelier de concassage, qui recevait les produits de l'exploitation en granulométrie 0/300 mm et alimentait la laverie en éléments de granulométrie 0/2 mm;
- Le broyage et la classification, qui préparait le minerai en le réduisant à la maille de libération adéquate pour la distribution sur les circuits de gravimétrie (60-500 μm) et de flottation (20-60 μm);

- La section gravimétrie, qui recevait tous les produits (60-500 µm) de la section broyage. Ces produits passaient sur une première série de tables à secousses Triplex «dégrossisseuses » puis sur des tables Simplex « finisseuses » où étaient récupérés des concentrés desquels était enlevé le mispickel par une flottation annexe avant leur passage au four sécheur et à la séparatrice magnétique. À la fin de cette étape se trouvait un ensachage en conteneurs plastiques de 1 200 kg ;
- La flottation et la filtration, qui traitent tous les produits broyés à 60 µm (99% du minerai entrant en laverie), tous les refus de tablage retournant à la section broyage. Après stockage dans un épaississeur pour régulation du débit et de la densité, une première série de cellules éliminait les sulfures puis dans une seconde série, les carbonates et les silicates étaient déprimés pour ensuite faire « monter » la scheelite. Les écumes minéralisées étaient « enrichies » dans des cellules releveuses, puis les concentrés étaient stockés dans un petit épaississeur avant filtration et ensachage dans des conteneurs souples en plastique de 1 200 kg ;
- La filtration et l'épandage des stériles, installée à l'extérieur sur le carreau, elle collectait tous les rejets de la laverie dans un épaississeur dont l'eau de surverse contenait moins de 30 g/m³ de matière solide en suspension. Après décantation et filtration en continu, les stériles étaient étalés en dépôt par une série de bandes transporteuses mobiles ;
- L'échantillonnage, était assuré par des échantillonneurs automatiques qui permettaient les contrôles instantanés de fonctionnement, ainsi que les bilans de l'ensemble de l'usine et des circuits principaux du traitement. Ils étaient installés sur le tout-venant entrant en laverie, sur l'entrée du circuit de flottation, sur les rejets du circuit sulfure, sur l'entrée du circuit flottation scheelite et sur la sortie des stériles globaux.

Figure 37 - Schéma de fonctionnement des opérations unitaires de traitement du minerai de la mine de Salau

Produits chimiques utilisés dans le procédé de flottation et nature des rejets liquides

Le procédé de traitement du minerai par « flottation », visant à séparer la scheelite des minéraux de la gangue non valorisables, nécessite l'utilisation de réactifs chimiques (activants, moussants, agents collecteurs, mouillants) et principalement représentés par le sulfate de cuivre, l'amyl xanthate de potassium, le carbonate de sodium, le silicate de soude et le Pamack, l'activant spécifique de la scheelite.

Ce procédé a produit des eaux usées dont le rejet dans le ruisseau du Cougnets a été autorisé par l'arrêté du 16 Juillet 1969. Un traitement de ces eaux a été réalisé avant leur rejet dans le milieu naturel, ce traitement impliquait l'utilisation de produits chimiques (principalement de l'acide sulfurique (H_2SO_4) et du sulfate d'aluminium ($AI_2(SO_4)_3$)).

2.6.2 Historique succinct des secteurs de Saubé et Hoque-Rabé

En juillet 1963, le gisement de Saubé est découvert lors d'une prospection des alluvions dans le ravin des Cougnets (commune de Couflens). Une déclaration de découverte de minéralisations en Plomb et Zinc est adressée par le B.R.G.M. à l'Ingénieur des Mines le 20/09/1963.

En mai 1965, le B.R.G.M. effectue une demande de Permis Exclusif de Recherche pour le Plomb, le Zinc et les substances connexes sur le territoire des communes de Couflens et d'Ustou. Le permis de recherche, dit "Permis de Saubé", est accordé par décret ministériel en date du 26 août 1965.

En août 1965, le B.R.G.M. obtient l'autorisation de prolonger son P.E.R. sur une superficie de 24 km².

Entre août et décembre 1965, des travaux miniers de reconnaissance ont été réalisés. Ils comprennent 165 mètres de galerie, 110 mètres de sondages percutants et 43 échantillons prélevés pour analyses. Ces travaux miniers et sondages intérieurs (percutants et carottés) sont menés sur l'indice de Saubé, correspondant au faciès des lentilles dolomitiques. Les sondages percutants, effectués sur les tracés au nord et au sud, n'ont montrés que de faibles minéralisations.

À partir de novembre 1965, un téléphérique de transport des matériaux dessert le site de Saubé.

En juillet 1968, un second prolongement du P.E.R. de l'indice de Saubé a été demandé et accordé, s'étendant ainsi jusqu'au 29 août 1971.

Deux sondages carottés, effectués en 1970 à partir de la galerie pour tester l'aval de la formation, n'ont retrouvé qu'une minéralisation assez pauvre.

En octobre 1970, les travaux effectués sur l'indice de Saubé correspondent à trois galeries, recoupes et travers-bancs sur 1450 mètres (dont 280 mètres linéaires pour la galerie Hoque Rabe, 470 mètres linéaires pour la galerie Saubé et 250 mètres linéaires pour la galerie Saubé supérieur), des sondages percutants sur 2 579 mètres et des sondages carottés sur 873 mètres. Ces galeries ont été creusées en petite section d'environ 4 à 5 m² dans des terrains à stratification subverticale (pour une meilleure tenue), à l'exception de l'entrée de la galerie Hoque Rabe qui a été creusée dans la terre végétale et dont le manque de tenue nécessite un débourrage après chaque reprise hivernale.

Une demande de renonciation au P.E.R. de Saubé, en date du 02/11/1970, a été prononcée par le B.R.G.M. suite à l'appauvrissement ou l'absence de minéralisation de l'aval des galeries au-delà de 250 mètres de profondeur.

Compte tenu de l'état des galeries, du rebouchage de leurs orifices d'entrées et de leur situation géographique, l'acceptation de la renonciation au P.E.R. de Saubé a été prononcée le 26/03/1971.

2.7 Sources potentielles de pollution

2.7.1 Cas particulier des stériles de creusement et des résidus de traitement

Le site minier du Pic de la Fourque accueille plusieurs zones de dépôt constituées (Figure 38), d'une part des stériles de creusement des galeries et des salles hébergeant les unités de traitement du minerai et d'autre part, des résidus issus du traitement du minerai. On dénombre 8 zones de dépôts dont les deux plus importantes correspondent aux verses à résidus du carreau 1 230 et du « Plat des Pommiers » à 1150 m.

Figure 38 - Carte localisant la position topographique des verses de la mine de Salau à l'échelle 1/10 000 (extraite du DADT de la SMA)

2.7.1.1 Stériles rocheux de creusement et d'exploitation

Les dépôts miniers de stériles rocheux issus du creusement des galeries s'étagent sous forme de verse entre le niveau 1230 construit au départ avec les déblais du site souterrain de l'usine de traitement et le niveau 1640 (site de la carrière).

On trouve ainsi en montant dans la pente topographique, la verse du niveau 1320, puis successivement les verses des niveaux 1430, 1475, 1532, 1575 et 1620 matérialisant les sorties des galeries aux mêmes altitudes. Aucune étude détaillée n'existe sur la composition très hétérogène de ces déblais mais très naturellement, ils correspondent à l'encaissant immédiat excavé des zones minéralisées en scheelite. Avec une très grande granularité (plusieurs cm à plusieurs dm), ils renferment plus ou moins de minéralisations notamment en sulfures de fer de type pyrrhotite qui s'observent encore dans certaines verses. Leurs compositions s'apparentent aux roches de types granodiorites et aux différents faciès de calcaires métamorphisés (marbres cipolins) ainsi que parfois à des calcschistes.

Le mode de dépôts peut poser problème puisque ces matériaux excavés ont été déversés dans la pente topographique, sur le versant est du ravin d'Anglade. Depuis leur mise en place et à cause de la très forte déclivité des terrains, les matériaux rocheux sont soumis à l'érosion où un entraînement mécanique gravitaire qui encombre aujourd'hui le correcteur de crue posé en contrebas par RTM (Restauration et Travaux en Montagne). Ils présentent également par endroits les mêmes phénomènes supergènes d'encroutements ferrugineux liés à la remobilisation et reprécipitation du fer que l'on observera sur les résidus de traitements (voir la photo de la Figure 39 ci-après).

Figure 39 - Photo de la verse à stériles du niveau 1320 montrant le ravinement en cours et la « carapace » ferrugineuse partiellement érodée

2.7.1.2 Résidus de traitement

Les digues et verses à résidus

Deux ouvrages ont été construits pour stocker les résidus provenant de l'usine de traitement. Nous rappelons que ces matériaux étaient filtrés et déshydratés avant rejet définitif.

a) La verse du carreau 1230

Les stériles de creusement des salles qui ont accueilli l'unité de concassage (3 200 m³ de stériles excavés) et la laverie (16 000 m³ de stériles excavés) ont permis de réaliser le terrassement de l'assise du carreau qui allait par la suite servir à la construction de la verse à résidus sur une pente naturelle comprise entre 50% et 70%.

La mise en service de cette verse a débuté en 1970 et s'est arrêtée en 1980, lorsque les dépôts ont atteint la capacité maximale de stockage (environ 300 000 m³) sur une épaisseur maximum de 25 m. Elle a servi, au cours de cette période, à stocker les résidus de traitement de la laverie correspondant aux rejets de la flottation ayant une granulométrie très fine (dont 75% des éléments sont inférieurs à 80 µm). Sur le plan minéralogique, ils sont essentiellement formés par les minéraux de la gangue, constituée par une concentration élevée en carbonates (skarns et cipolins) ainsi qu'en pyrrhotite qui a pu atteindre plusieurs dizaines de pour cent.

Les pieds de verses ont été aménagés avec 3 bassins de décantation d'une capacité de stockage d'environ 200 m³. Ceux-ci étaient constitués de digues réalisées et rehaussées selon les besoins, par des empilements de sacs plastiques remplis de résidus, intercalés avec des nappes de géotextiles, tel qu'illustré sur la figure 40. Ces bassins ont également été conçus pour éviter la migration des particules fines vers l'aval et en direction du ruisseau des Cougnets.

Figure 40 - Schéma de principe de construction d'une digue de retenue des produits d'entraînement (Source : SMA)

En 1987, à la fin de l'exploitation, des études sur la stabilité et sur le réaménagement de la verse étaient engagées. Des travaux furent effectués. Il était constaté que la verse 1230 était totalement stabilisée et indurée sur une épaisseur de 1 m par des phénomènes d'oxydations (« chapeau de fer »). Les travaux ont alors consisté en un nivellement de la partie sommitale avec la mise en place d'une légère contre-pente vers la route, d'un géotextile et d'une émulsion de bitume dosée à 5 kg/m². De plus, en surface, une couche de terre de 30 cm d'épaisseur a été amenée.

À noter que la partie ouest de la verse a été recouverte par une couche de stériles rocheux (0-400 mm). Cette bonne pratique, néanmoins non étendue à l'ensemble du dépôt, a permis de contribuer avec le temps à la stabilité mécanique en surface des résidus ainsi qu'à leur revégétalisation naturelle par des bouleaux (Figure 41).

Figure 41 - Verse à résidus 1230 (dépôt 09_0019_A_T1)en plan et en vue de côté depuis l'ouest (à noter la partie recouverte par des stériles rocheux plus propice à la revégétalisation naturelle)

b) La verse du Plat des Pommiers 1150

À partir de 1979, pour éviter le débordement des digues sur la verse 1230 et l'arrêt de la production de la mine, la SMA se met en quête d'une nouvelle zone de stockage. Une étude des zones favorables est alors lancée par relevé topographique de toute la vallée du Cougnets (entre l'exploitation et le village de Salau) et ses résultats ont identifié la zone dite du « Plat des Pommiers » (carte de la Figure 38).

Cette zone relativement plate a une emprise d'environ 5 hectares et elle est située en totalité à l'intérieur du permis d'exploitation avec une capacité de stockage de 394 000 m³ soit 710 000 tonnes), ce qui correspondait à environ 11 années de fonctionnement de la laverie. Le socle de cette zone est constitué du calcaire du Caradoc, de moraine, et d'une intercalation carbonatée dans les schistes ordoviciens.

La mise en verse s'est effectuée à partir d'une plateforme de 21 m², située sur la route d'accès à la cote 1 150 où était installé un filtre à tambour pour l'essorage des résidus. De la même manière que plus haut sur le dépôt 1230, des digues de retenues ont été réalisées en pied de talus, à partir de sacs remplis avec les résidus de traitement et construites au fur et à mesure du remplissage, avec pour chaque lit successif, un drainage par une cloison de Bidim C20. La verse du Plat des Pommiers a été opérationnelle de 1980 à 1986 et l'épaisseur des matériaux stockés est estimée à 20-25 m.

En 1987 au moment de la réhabilitation du site, la consolidation des matériaux ne fut pas jugée suffisante car l'oxydation progressive de la partie superficielle des dépôts, facteur stabilisant, n'avait pas encore joué totalement son rôle. Des travaux ont donc été réalisés, visant à donner un profil d'équilibre de 30°, avec étanchéification de la partie supérieure, fascinage des talus, épandage de terre et ré-engazonnement (Figure 42).

Figure 42 - Verse à résidus 1150 du Plat des Pommiers (dépôt 09_0019_A_T7) en plan et en vue de côté depuis l'ouest

Stabilité des verses

Dix ans plus tard, en décembre 1996, à l'occasion du dépôt du dossier d'arrêt définitif de travaux, diverses administrations ont souhaité quelques compléments d'informations :

- la possibilité de végétalisation de la verse 1230 ;
- la stabilité ponctuelle et d'ensemble des deux verses ;
- les conséquences du vieillissement du géotextile.

Les études ont été menées respectivement par Siras Ingénierie et le Laboratoire Central des Ponts et Chaussées (LCPC). La végétalisation du terril 1230 s'est révélée impossible, sans remettre en cause la géométrie et la stabilité de l'ensemble par la destruction du « chapeau de fer ». Les études menées par le LCPC sont apparues rassurantes sur le vieillissement du géotextile (Girard *et al.*, 1999) et sur la stabilité des terrils. Quelques aménagements mineurs ont toutefois été effectués au niveau du Plat des Pommiers.

En 2007, un audit demandé par la DRIRE Midi-Pyrénées est réalisé par l'INERIS (INERIS, 2007) afin de vérifier la stabilité des verses et les problèmes d'érosion régressive (formation de ravines apparaissant avec le temps).

L'état des lieux comparatif au cours du temps entre 1978 et 2007 montre sur chacune des verses les principaux résultats suivants :

- aucun signe récent d'instabilité d'ensemble n'est visible ;
- une bonne revégétalisation naturelle et le développement d'un couvert végétal important sur les talus (à l'exception des plus pentus égal ou supérieur à 45°) ainsi que sur les bassins et les digues ;
- les bassins de décantation sont partiellement voire totalement pleins et n'assurent plus leur rôle de décantation-filtration ;

L'audit souligne cependant que l'importance des phénomènes d'érosion est très différente entre les deux verses. La verse 1230 présente une érosion faible du fait du phénomène de

« cuirassement » qui permet un développement important de la végétation. La verse du Plat des Pommiers est de son côté moins sujette au phénomène de cuirassement et donc localement affectée par des ravines importantes et des résurgences d'eaux acides limitant la progression de la végétation.

En conclusion, malgré la forte pente des talus, ces deux verses à résidus ne présentent pas de risque d'instabilité majeur en raison notamment de l'existence d'une cimentation superficielle des matériaux qui s'est développée sur ses flancs. Le désordre principal concerne surtout une possible arrivée à saturation des bassins situés en pied de dépôts.

Caractéristiques chimiques des résidus

Aujourd'hui les deux dépôts possèdent en surface une couleur rougeâtre témoignant de nombreuses transformations chimiques affectant les matériaux. À quelques cm ou dizaines de cm plus en profondeur, on découvre des niveaux blanchâtres à ocres avant de passer à des niveaux indurés noirs correspondant aux résidus d'origine non encore oxydés (Figure 43).

Figure 43 - Photos montrant les aspects des résidus et les différents faciès proches de la surface

Les données présentées ci-après sont issues d'investigations effectuées par le BRGM en 2013 dans le cadre d'un projet interne de recherche (projet VALODEM « Valorisation des déchets miniers ») et en 2017 dans le cadre d'une demande de GEODERIS qui souhaitait utiliser l'ensemble des données à la fois pour compléter la phase informative de la présente étude et pour mieux appréhender la mobilité des métaux contenus dans les résidus et donc leur aptitude à migrer dans les eaux vers l'aval des dépôts de résidus.

Les deux dépôts de résidus ont ainsi été investigués par screening chimique utilisant la fluorescence X portable (pXRF), lors d'une campagne de terrain réalisée en été 2013 complétée en 2017 (Bodénan, 2018). Des mesures directes ont été effectuées sur échantillon brut en surface et sur des prélèvements en tarière ainsi que des analyses chimiques en laboratoire sur échantillons ponctuels et composites par ICP-AES et ICP-MS dans les laboratoires du BRGM.

Des analyses par diffraction X (DRX) ont aussi été effectuées sur certains échantillons afin d'en préciser leur assemblage minéralogique et en complément, une étude rapide sur la lixiviation a été effectuée en 2017 sur deux échantillons.

Au total, 59 mesures ont été réalisées sur les différents faciès de résidus des deux verses complétées par 9 analyses chimiques en laboratoire.

a) Sur le plan de la composition chimique :

La Figure 44 montre pour les deux verses à résidus les résultats suivants :

- des valeurs relativement constantes en tungstène, de plusieurs milliers de ppm et proches pour les deux dépôts ;
- des fluctuations assez marquées pour les autres éléments : Fe, As, Cu ;
- un écart des teneurs en arsenic entre les deux dépôts, le Plat des Pommiers étant plus riche ;
- la sous-évaluation notable du Cu sur échantillon brut par rapport à l'échantillon sec.

Figure 44 - Analyse par fluorescence X portable des deux verses à résidus a) in-situ et sur brut ; b) après séchage et homogénéisation

Avec la profondeur, l'évolution des teneurs sur les profils des tarières est proposée en Figure 45 ci-après. On note une augmentation ponctuelle systématique des teneurs en cuivre qui correspond à l'interface oxydé / réduit. Cela correspond probablement au lessivage et à la reprécipitation des porteurs secondaires de cuivre depuis la zone oxydée au niveau de l'horizon Redox.

Figure 45 - Profils des teneurs en W, As, Cu, Fe (XRF sur sec) de trois tarières réalisées sur la verse 1230 (tarières 01 et 02) et sur le Plat des Pommiers (tarière 03)

En résumé, les valeurs médianes calculées en ppm sur sec, pour les 59 échantillons des deux dépôts sont : 2430 ppm W ; Cu 1783 ppm ; Fe 15%. Les teneurs médianes en arsenic sont distinctes pour les deux dépôts : 273 ppm As pour la verse 1230 et 4,5 à 6 fois plus pour celle du Plat des Pommiers (1669 ppm As). Cette variation significative en arsenic est probablement à mettre en relation avec une variation des minerais traités ceux extraits à partir de 1980 pouvant être plus riches en arsénopyrite.

b) Sur le plan de la composition minéralogique :

Les espèces détectées par DRX dans les résidus sont listées en Tableau 8. À côté d'une matrice quartzique et silicatée à argiles et carbonates, minéraux de la gangue, on note la présence de sulfures, sulfates et oxydes divers dont les oxydes de fer.

De façon simplifiée et en prenant à la fois en compte les analyses chimiques et minéralogiques qualitatives, on note que :

- <u>les faciès oxydés rougeâtres</u> renferment une prédominance d'oxydes de fer et probablement de manganèse, l'absence de sulfates et une concentration en cuivre faible, témoin du lessivage superficiel de ce métal. Par contre ils sont enrichis en arsenic qui s'est retrouvé adsorbé sur les oxyhydroxydes de fer ;
- <u>les faciès blanchâtres</u> sont principalement enrichis en sulfates (gypse, jarosite) voire carbonates mais dépourvus en d'autres minéraux ;
- <u>les faciès noirs</u> assimilés aux résidus originels non oxydés, renferment une quantité encore significative de sulfures et d'un peu de carbonates. Ils correspondent sans

		PP(2013)-pt022-	PP(2013)-pt022-	PP(2013)-pt044-			
Diffra	ction des rayons-X	noir	blanc	rouge			
silicates	plagioclase	х	х	x			
	amphibole	X	х	X			
	illite et/ou micas	х	х	x			
	chlorite	х	х	х			
carbonates	calcite	-	possible	X			
	dolomite	Х	х	Х			
	sidérite	possible	possible	possible			
oxydes	quartz	X	Х	X			
	corindon	possible	possible	X			
	goethite	-	-	possible			
	magnetite	Х	possible	possible			
	oxyde de manganèse	possible	х	possible			
	rutile	-	possible	-			
	scheelite	-	possible	possible			
divers	westerveldite (Fe,Ni,Co)As	possible	possible	possible			
sulfures	pyrrhotite	X	-	-			
	chalcopyrite	Х	-	-			
	pyrite	-	possible	Х			
sulfates	gypse	X	Х	-			
	jarosite	-	possible	-			
Analyses	chimiques globales						
	W	2751	3682	1451			
	As	454	158	5261			
	Cu	17636	743	501			
	Mn	2554	1879	4297			
	Ca%	3	5	3			
	Fe%	24	7	30			

doute à ce qu'il y a de plus proche de la composition des résidus au moment des rejets.

Tableau 8 - Phases minérales détectées par DRX sur poudre et chimie correspondante

c) Sur le plan géochimique :

Les deux échantillons ayant subi un test de lixiviation en batch selon la norme NF EN 12 457-2⁶ ont fourni les résultats sur éluats consignés dans le Tableau 9 suivant.

⁶ Rapport liquide sur solide (L/S) de 10, pendant 24h, sur échantillon humide, en considérant l'humidité mesurée dans la prise de masse, ici proche de 24%

			1.1 LIX	2.1 LIX
			PIF-17-SOL-27	PIF-17-SOL-28
			rouge	noir
Humidité (% brut)			24,12	24,28
pН	3	U	3,95	7,05
Cond (25°C)	20	μS/cm	2220	2380
Ca	10	mg/kg MS	6217	6994
Fe	0,2	mg/kg MS	0,5	22,2
PO4	1	mg/kg MS	< LQ	< LQ
SO4	10	mg/kg MS	15269	14239
AI	10	µg/kg MS	5330	40,2
As	1	µg/kg MS	6,5	207
Ва	50	µg/kg MS	154	182
Cd	0,1	µg/kg MS	5,1	0,1
Cr	1	µg/kg MS	2	1,2
Cu	1	µg/kg MS	1970	4,2
Ni	50	µg/kg MS	58,1	176
Pb	1	µg/kg MS	78	< LQ
W	1	µg/kg MS	6,4	24,2
Zn	50	µg/kg MS	399	98,8

Tableau 9 - Résultats de l'analyse des éluats sur deux échantillons (faciès noir et rouge).Essai de lixiviation selon la norme NF EN 12 457-2

On notera la différence importante de pH des éluats, pH de 4 pour le faciès oxydé et de 7 pour le faciès de résidus originels. Cette différence peut s'expliquer par les contenus respectifs en sulfates, sulfures et carbonates (de calcium, manganèse et magnésium) différents des échantillons. L'explication que l'on peut avancer est la suivante :

- la quantité de carbonates non encore dissouts par le début de la dissolution oxydante des sulfures de fer n'a pas été analysée ici mais est importante dans les faciès noirs des résidus originels. Cette quantité suffit probablement à tamponner l'acidité produite par l'oxydation en cours des sulfures et ainsi fournir un pH neutre lors de la lixiviation. On notera que la concentration des sulfates est élevée ce qui est attesté par la valeur de conductivité de l'éluat prouvant que les phénomènes d'oxydation dans cet échantillon sont bien en cours ;
- à l'opposé, dans le faciès oxydé, il n'y a probablement plus assez de carbonates pour neutraliser l'acidité stockée dans les sels solubles que représentent les oxysulfates et ainsi générer un pH acide lors du processus de lixiviation. En conséquence, les métaux facilement mobilisables dans les gammes de pH acide comme l'aluminium, le cuivre ou le zinc se retrouvent en concentrations significatives dans l'éluat.

En conclusion, les études menées sur les caractéristiques chimiques et minéralogiques et comportementales des résidus de traitement du minerai de Salau montrent que ces matériaux subissent un phénomène d'oxydation très lente. Les minéraux secondaires issus de la dissolution des sulfures de fer encore en place aux côtés des carbonates de la gangue dans les faciès enfouis noirs sont typiques de phénomènes que l'on trouve sur tous les sites où sont entreposés des résidus de nature et composition analogue. Un profil d'oxydation typique des « chapeaux de fer » se développe donc sur la surface des verses contribuant ainsi à la stabilisation relative des résidus qu'elles renferment.

2.7.2 Les eaux de mine

L'entrée de la mine au niveau du carreau 1230 présente une émergence collectant l'essentiel des eaux minières drainées par les travaux souterrains remontant plus haut dans le versant.

Cette émergence fait régulièrement l'objet d'une inspection visuelle pour s'assurer de l'absence d'endommagement et de fuite importante, mais également d'un rejet correct dans le ruisseau d'Anglade (Figure 46).

Figure 46 - Ecoulement de l'émergence 1230 dans le ruisseau d'Anglade

La qualité de cette eau de mine est bonne. Elle a été analysée à de nombreuses reprises entre 2002 et 2011. Ses caractéristiques physicochimiques sont les suivantes (Hulot et Aubert, 2011).

Paramètre	Valeurs seuil de l'arrêté du 11/01/2007 ⁷	Emergence 1230
рН	Entre 6,5 et 9	Entre 7,9 et 8,10
Conductivité (µs/cm)	Entre 180 et 1000	Entre 260 et 280
Température (°c)	/	10°C
Potentiel Redox (mv)	/	330
Matières en suspension (mg/L)	/	< 2

Elle ne contient ni hydrocarbures, ni PCB et les teneurs en ions majeurs et en métaux restent globalement très faibles à l'exception de l'arsenic dont la concentration (21 μ g/L) est le double de la norme de potabilité définie par l'arrêté du 11/01/2007 (10 μ g/L). Ces résultats sont présentés dans le Tableau 10 suivant.

⁷ Annexe 1 de l'arrêté du 11/01/2007 relative aux limites et références de qualité des eaux destinées à la consommation humaine.

Paramètres	Unités	Valeurs seuil de l'arrêté du	Emergence 1230				
		11/01/2007					
lons majeurs	4.004	252	5 4 7				
Sulfate	mg/I SO4	250	54,7				
Chlorure	mg/I CI	250	1,15				
Nitrate	mg/I NO3	50	<1,00				
Nitrite	mg/I NO2	0,5	<0,04				
Orthophosphate	mg/I PO4	-	<0,1				
Ammonium	mg/I NH4	0,1	<0,05				
Fluorure	mg/l	1,5	<0,5				
Azote Kjeldahl	mg/l N	-	<1				
Azote global	mg/l N	-	<1,21				
Demande Chimique en Oxygène	mg/l O2	-	<30				
Demande Biochimique en Oxygène	mg/l O2	-	<3				
Carbone Organique Total	mg/l Cl	2	<0,5				
Cyanures totaux	μg/l CN	50	<10				
Métaux							
Aluminium	mg/l Al	0,2	<0,05				
Antimoine	mg/l Sb	0,005	<0,02				
Argent	mg/l Ag	-	<0,01				
Arsenic	mg/l As	0,01	0,021				
Baryum	mg/l Ba	0,7	<0,005				
Beryllium	mg/l Be	-	<0,002				
Bore	mg/l B	1	<0,05				
Cadmium	mg/l Cd	0,005	<0,005				
Chrome	mg/l Cr	0,05	<0,005				
Cobalt	mg/l Co	-	<0,005				
Cuivre	mg/l Cu	2	<0,01				
Etain	mg/ Sn	-	<0,02				
Fer	mg/l Fe	0,2	<0,01				
Manganèse	mg/l Mn	0,05	<0,005				
Molybdène	mg/l Mo	-	<0,005				
Nickel	mg/l Ni	0,02	<0,005				
Phosphore	mg/l P	-	<0,005				
Plomb	mg/l Pb	0,01	<0,005				
Strontium	mg/l Sr	_	0,118				
Titane	mg/l Ti		<0,005				
Tungstene	mg/l W	-	0,13				
Vanadium	mg/l V	-	<0,005				
Zinc	mg/l Zn	-	<0,02				
Zirconium	mg/l Zr	-	<0,02				

Tableau 10 - Principaux résultats analytiques de l'eau de mine
de l'émergence du carreau 1230 (2011)

3 CARACTERISATION DU FONDS PEDOGEOCHIMIQUE (FPG)

3.1 Objectif

L'étude du fond pédogéochimique a pour objectif de déterminer la qualité chimique des sols situés hors de l'influence minière et au droit de chaque formation géologique majeure affleurant dans la zone d'étude.

Pour atteindre l'objectif fixé, une étude du contexte géologique a été réalisée sur l'examen détaillé des cartes géologiques disponibles sur le secteur minier du Pic de la Fourque (Aulus les bains n°1086 et St Girons n°1074) ainsi que sur les données géochimiques de l'Inventaire minier. Les protocoles de prélèvements et de mesure ainsi que les méthodologies suivies sont détaillés dans le rapport BRGWRP-67663-FR (Laperche, 2018).

Les résultats concernant le contexte géologique ont été présentés dans la phase informative du chapitre 2 de ce rapport (2.5 Contexte géologique) et nous rappelons ici qu'ils ont amené aux conclusions suivantes :

- à l'échelle de la zone d'étude, les lithologies observées peuvent être regroupées dans deux grands groupes principaux synthétisés dans l'échelle stratigraphique de la figure suivante :
 - Les formations à dominance silicoclastique (pélites, schistes et grès) ;
 - Les formations à dominance carbonatée (calcaires et dolomies).
- b) Sur le plan stratigraphique, la série sédimentaire d'âge Primaire a été découpée en deux sous-séries comme indiquée par la Figure 47 suivante.

Figure 47 - Principales coupures lithostratigraphiques issues de l'étude géologique du secteur d'étude et servant à la détermination du FPG (Melleton, 2018)

c) Sur le plan géochimique, ces deux groupes montrent des signatures contrastées aussi bien pour les éléments majeurs (SiO₂, Al₂O₃, Na₂O, MgO) que les éléments en trace. Parmi celles-ci, les schistes noirs du Silurien (s₁₋₃), avec la présence notable de pyrite disséminée, montrent des concentrations assez élevées pour l'ensemble des métaux analysés. Les pélites bleutées (d₃₋₄) sont caractérisées par les plus fortes teneurs en zinc et en chrome, alors que la formation d'Evol (k₁₋₃), qui présente elle-

aussi des niveaux riches en sulfures, présente une signature similaire mais moins marquée.

3.2 Méthodologie

Sur la base des connaissances géologiques, une liste des principales formations lithologiques représentatives du secteur d'étude a été dressée, afin de pouvoir y mener une campagne d'analyse des sols par fluorescence X portable (pXRF) (Laperche, 2018). Nous rappelons que ces investigations ont été réalisées à l'aval des anciennes installations minières et des indices minéralisés du secteur du Pic de la Fourque selon un transect orienté Nord-Sud illustré sur la carte de la figure 48.

Cette méthode d'approche, validée par GEODERIS, précise que dans la mesure du possible, l'horizon de surface des sols investigués doit être homogène (5 à 10 cm de profondeur en moyenne) et se situer hors des zones à usages.

Les résultats de la fluorescence X portable (pXRF) ont été vérifiés afin d'éliminer les mesures considérées comme non exploitables et non fiables et calibrés par des analyses chimiques en laboratoire par ICP (sonde à Plasma à Couplage Inductif), ce qui a permis la réalisation de droites de calibration « mesures pXRF *vs* analyses ICP ».

Au total, 109 mesures ont été effectuées dont 96 mesures sur des sols avec 89 prélèvements de sols réalisés. Treize mesures ont été faites sur des roches pour s'assurer de l'identification du faciès rendu possible par la détermination des ratios de certains éléments majeurs comme le calcium, le potassium et le fer.

Les analyses sur le terrain ont porté *a minima* sur huit métaux (tungstène, arsenic, antimoine, cadmium, cuivre, fer, plomb et zinc) et chaque point de mesure a été géoréférencé et présenté dans une table où le matériau a été minutieusement décrit.

L'objectif était de fournir des gammes de valeurs pour les substances retenues (tungstène, arsenic, antimoine, cadmium, cuivre, fer, plomb et zinc) et pour les autres substances analysées et d'intérêt, et ce, pour chaque formation géologique majeure.

Sur les 89 échantillons prélevés, 20 ont été sélectionnés pour être analysés par spectrométrie ICP. Ce choix tient compte des teneurs mesurées sur site mais aussi de la composition minéralogique et chimique des différentes formations (alumino-silicatés, plus ou moins riches en carbonates, etc.).

Figure 48 - Position de tous les échantillons de sols et de roches analysés dans la zone d'étude représentée avec le fond géologique et selon le transect N-S

D'une manière générale, les comparaisons entre fluorescence X portable (pXRF) et spectrométrie ICP se sont révélées satisfaisantes.

3.3 Interprétation des mesures pXRF par rapport à la géochimie des sols et des sédiments de fond de vallon analysés lors de l'inventaire minier

Après avoir comparé les données pXRF avec des moyennes sur tous types de sols, ces mêmes données ont été comparées avec les données trouvées sur les lithologies étudiées et décrites dans le sous chapitre dédié au contexte géologique afin d'expliquer certaines des fortes teneurs rencontrées. Toutes les teneurs par formation n'ont pas été expliquées, seulement celles qui sont au-dessus ou au-dessous des moyennes (Laperche, 2018).

Les 109 mesures effectuées sur site sont positionnées sur la carte géologique ci-dessus (Figure 48).

3.3.1 Lithologie du Dévonien Nord et formations sous et sus-jacentes

La formation s1-3 est riche en vanadium (500 mg/kg) et en cuivre (60 mg/kg), observation confirmée par analyse ICP. Cette formation est composée de schistes noirs du Silurien connue pour donner des signatures métalliques plus riches que les autres formations.

La formation d1 composée d'alternances schisto-calcaires est riche en calcium (6,5%), en zinc (456 mg/kg), en plomb (45 mg/kg) et en nickel (61 mg/kg). Elle est connue pour renfermer de nombreux indices à Zn/Pb dont Hoque Rabé et Saubé. L'hétérogénéité des teneurs (particulièrement en Zn) est due à la distance entre ces indices et les zones de prélèvements des échantillons. La présence de Ni est confirmée en ICP mais à des valeurs moins fortes. À noter que les travaux de Jérémie Melleton (2018) confirme la présence de certains métaux (Zn, Pb, Cu, Ni, As et éventuellement Co) comme « des marqueurs potentiels de ces minéralisations ».

La formation d2 correspondant aux calcaires gris crinoidiques ressemble à la formation d1 même si les teneurs en calcium et zinc sont moins fortes. Il est rappelé que des filonnets à sphalérite et galène parallèles à la stratification sont connus dans cette formation.

La formation d3 composée de séries de schistes avec des intercalations de calcaires est riche en fer (3,8%), en zinc (130 mg/kg) ainsi qu'en nickel (64 mg/kg). Les teneurs en nickel sont confirmées en ICP à des concentrations similaires.

La formation d4-5 (schistes violets et calcschistes) est riche en calcium (2,7%), en zinc (153 mg/kg) et en nickel (64 mg/kg), observation confirmée par ICP. II y a certainement de petites minéralisations dispersées car d'après les données géochimiques sol de l'inventaire minier, cette formation présente des teneurs en zinc > 250 mg/kg (Figure 30 dans le chapitre 2.5).

La formation d5-7 composée de calcaires amygdalaires est riche en fer (5,5%), en manganèse (3244 mg/kg), en cuivre (96 mg/kg) et en arsenic (112 mg/kg) mais pauvre en strontium (50 mg/kg). Elle présente par ailleurs de fortes concentrations en arsenic et en cuivre (Figures 32 et 33 du chapitre précédent).

La formation h3 ne présente pas de fortes variations par rapport aux moyennes sauf pour le manganèse qui est supérieur (3028 mg/kg) alors que le strontium est plus faible (59 mg/kg). Cette formation est composée de pélites et de grès et renferme de fortes concentrations en manganèse dans les sédiments de fond de vallon (Figure 26 du chapitre précédent).

3.3.2 Lithologie du Dévonien Sud et formations sous-jacentes du Cambrien

Au sud du transect, la formation d'Evol k1-3 datée du Cambrien est composée d'alternance schisto-gréseuses et carbonatées possédant des concentrations moyennes en plomb, cuivre et nickel du même ordre de grandeur pour des lithologies voisines du gisement de Salau (Tableau 5, paragraphe 2.5.1). Le zinc, quant à lui, apparaît plus élevé avec une moyenne de 97 mg/kg.

La formation s-d1 constituée d'alternances silto-carbonatées est riche en plomb (40 mg/kg), en arsenic (55 mg/kg), calcium (9,4%) et en strontium (291 mg/kg).

La formation d2-3 (d2-3m) correspondant aux calcaires de Salau encaissant le gisement est riche en fer (4,5%), en manganèse (1799 mg/kg) ainsi qu'en arsenic (57 mg/kg). Ces fortes teneurs en fer pouvant représenter la signature des skarns, sont confirmées en ICP ainsi que par les concentrations mesurées dans les sédiments de fond de vallon (Figures 25 et 26 de ce rapport). Dans les zones minéralisées, le tungstène a pu être détecté (0,3%) mais les teneurs chutent rapidement (25 mg/kg) pour être < LD⁸ dès qu'on s'éloigne de ces zones minéralisées.

La formation d3-4 des pélites bleutées est également riche en fer (4,9%), en zinc (83 mg/kg), en nickel (64 mg/kg), en plomb (40 mg/kg) et en arsenic dans une moindre mesure (30 mg/kg). Ces valeurs sont confirmées en ICP et sont comparables aux concentrations mesurées dans les lithologies encaissantes du gisement de Salau. L'hétérogénéité des mesures en Zn peut être vraisemblablement reliée à la présence d'indices minéralisés comme celui du Pic des Maunets.

La formation γ s4 correspondant à l'intrusion granodioritique du Pic de la Fourque est pauvre comparée aux teneurs rencontrées dans les autres formations mais c'est aussi la seule formation granitique parmi les formations calcaires à schisto-calcaires de la zone. Un échantillon présente une valeur forte en arsenic (168 mg/kg) confirmée en ICP. Cette forte teneur pourrait représenter l'influence locale des minéralisations en arsénopyrite associées aux skarns de Salau.

La formation superficielle Gx ne présente pas de fortes variations par rapport aux moyennes. Cette formation d'origine glaciaire est un mélange intégrant des signatures amont des autres formations.

3.4 Détermination des FPG par élément métallique

Les gammes retenues par élément et par lithologie sont listées dans les tableaux de statistiques simples ci-après. Elles sont exprimées sous la forme de moyennes ± l'écart-type (noté ci-après E.T.) (Laperche, 2018). Pour les éléments comme le tungstène, l'antimoine, le cadmium et le bismuth non détectés par les mesures de terrain, les gammes ont été établies à partir des analyses obtenues par ICP.

Ainsi, seuls les éléments métalliques comme le plomb, le zinc, l'arsenic, le cuivre, le nickel, le vanadium et le fer ont été retenus dans la présentation des résultats cartographiques qui suivent.

⁸ Limite de détection.

Le Plomb

Figure 49 - Carte des points échantillonnés pour le plomb

En général, les teneurs minimales pour toutes les formations sont autour de la teneur moyenne dans les sols (19 mg/kg, Sposito, 1989) ; les valeurs médianes sont comprises entre la teneur moyenne et 2,5 fois cette valeur (Figure 49 et Tableau 11).

Les valeurs les plus fortes sont quant à elles comprises entre 3 à 4 fois la valeur moyenne présentée dans le Tableau 11, ce qui n'est pas très élevé à la vue du contexte géologique (Tableau 13). Seule une formation (d₅₋₇) présente un point très élevé à 225 mg/kg, sans cette valeur la moyenne pour cette formation est similaire aux autres ($25 \pm 5 \text{ mg/kg}$). Cet échantillon est aussi riche en cuivre sans montrer d'autres concentrations élevées.

Lithologie	Ν	Nb	Moyenne	E.T	Médiane	Minimum	Maximum
Formations Dévonien Nord							
s1-3	6	6	32	9	32	20	43
d1	6	6	38	15	43	13	56
d2	6	6	32	14	25	20	53
d3	9	9	28	10	29	14	42
d4-5	7	7	27	13	25	15	48
d5-7	5	5	65	90	26	19	225
Formations Dévonien Sud							
k1-3	7	6	18	9	16	12	34
s-d1	5	5	40	15	48	22	57
γs4	5	5	22	7	21	12	29
d2-3	9	9	35	20	30	15	82
d2-3m	2	2	47	34	47	15	70
d3-4	5	5	40	25	30	22	84
Gx	5	5	28	8	27	19	39
h3	4	4	29	9	27	19	41
Formations zone Nord Pyrénée	nne						
n5-6	6	6	27	6	28	21	35
n7aK	6	6	23	6	23	16	31

Tableau 11 - Statistiques simples pour les teneurs en plomb exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ⁹ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en plomb pour chaque formation géologique

• Le Zinc

L'ensemble des points mesurés avec le pXRF est reporté sur la carte ci-après (Figure 50) et les statistiques simples des teneurs pour chaque formation géologique sont rassemblées dans le Tableau 12 ci-après.

Deux formations (k_{1-3} et γs_4) montrent des teneurs moyennes faibles en zinc (16 mg/kg et 34 mg/kg) par rapport à la concentration moyenne dans les sols (60 mg/kg, Sposito, 1989). La plupart des formations ont des teneurs moyennes comprises entre 55 mg/kg et 83 mg/kg (d_{5-7} , s- d_1 , d_{2-3} , d_{3-4} , Gx, h_3 et n7ak). Les dernières ont des teneurs moyennes comprises entre 102 mg/kg et 224 mg/kg avec des valeurs maximales pouvant aller jusqu'à 523 mg/kg. Les valeurs médianes reflètent les mêmes tendances que les moyennes.

⁹ Limite de Quantification donné par l'appareil de mesure pXRF.

Figure 50 - Carte des points échantillonnés pour le zinc

Lithologie	N	Nb	Moyenne	E.T	Médiane	Minimum	Maximum		
			Formation	s Dévonie	en Nord				
s1-3	6	6	76	33	86	31	109		
d1	6	6	224	182	192	54	523		
d2	6	6	110	55	97	47	210		
d3	9	9	130	56	117	53	219		
d4-5	7	7	153	124	93	58	384		
d5-7	5	5	55	21	65	21	75		
Formations Dévonien Sud									
k1-3	7	4	16	3	16	12	20		
s-d1	5	5	57	18	50	41	85		
γs4	5	4	34	21	26	19	64		
d2-3	9	9	84	85	44	19	291		
d2-3m	2	2	119	96	119	19	187		
d3-4	5	5	83	47	55	43	150		
Gx	5	5	74	36	71	23	111		
h3	4	4	76	6	76	70	82		
		Fc	ormations zo	ne Nord F	Pyrénéenne				
n5-6	6	6	102	45	79	65	161		
n7aK	6	6	58	10	59	47	73		

Tableau 12 - Statistiques simples pour les teneurs en zinc exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en zinc pour chaque formation géologique

• L'Arsenic

D'une manière générale, les formations (d1, d2, d3, d4-5, k1-3, d2-3, d2-3m, Gx, h3, n5-6, et n7ak) ont des teneurs moyennes (ainsi que les médianes) inférieures à 30 mg/kg ce qui est déjà 4 fois la teneur moyenne dans les sols (7,2 mg/kg, Sposito, 1989). Les autres formations (s_{1-3} , d_{5-7} , s-d₁, γs_4 et d₃₋₄) ont des teneurs moyennes comprises entre ~40 mg/kg et 112 mg/kg et pour les médianes entre 33 mg/kg et 59 mg/kg.

Les résultats cartographiques et le traitement statistique des données sont présentés sur la Figure 51 et le Tableau 13.

Figure 51 - Carte des points échantillonnés pour l'arsenic

Lithologie	Ν	Nb	Moyenne	Minimum	Maximum				
Formations D	évonien	Nord							
s1-3	6	6	37	10	36	23	47		
d1	6	5	23	6	26	16	28		
d2	6	6	24	16	20	12	55		
d3	9	9	25	8	24	16	38		
d4-5	7	7	14	6	12	8	26		
d5-7	5	5	112	149	49	12	369		
Formations D	évonien	Sud							
k1-3	7	7	21	20	11	8	65		
s-d1	5	5	55	31	59	24	95		
γs4	5	5	48	67	16	14	168		
d2-3	9	9	25	15	27	9	46		
d2-3m	2	2	22	21	22	7	37		
d3-4	5	5	43	64	33	11	49		
Gx	5	4	23	10	24	11	32		
h3	4	4	28	25	19	11	65		
Formations z	one Nord	d Pyréné	enne						
n5-6	6	6	27	30	17	7	88		
n7aK	6	5	10	3	10	6	14		

Tableau 13 - Statistiques simples pour les teneurs en arsenic exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en arsenic pour chaque formation géologique

• Le Cuivre

Les teneurs moyennes sont comprises entre < la limite de quantification LQ et 34 mg/kg pour la plupart des formations avec des valeurs maximales de 1 à 3 fois la concentration moyenne dans les sols (25 mg/kg, Sposito, 1989). Trois formations (s_{1-3} , d_{2-3} et h_3) ont des teneurs autour de deux fois la concentration moyenne dans les sols et deux formations (d_{5-7} et γs_4) ont des teneurs proches de 100 mg/kg sachant qu'il n'y a qu'un seul point au-dessus de la LOD pour la formation granitique. Les médianes sont inférieures aux moyennes mais suivent la même tendance.

L'ensemble des points mesurés avec le pXRF est reporté sur la carte ci-après (Figure 52) et les statistiques simples des teneurs pour chaque formation géologique sont rassemblées dans le Tableau 14 ci-après.

Figure 52 - Carte des points échantillonnés pour le cuivre

Lithologie	N	Nb	Moyenne	E.T	Médiane	Minimum	Maximum		
Formations D	évonien	Nord							
s1-3	6	6	57	20	55	32	91		
d1	6	3	32	17	30	15	49		
d2	6	2	21	9	21	15	27		
d3	9	3	24	7	22	19	32		
d4-5	7	4	34	27	25	14	73		
d5-7	5	4	96	109	53	22	257		
Formations Dévonien Sud									
k1-3	7	4	31	23	21	17	65		
s-d1	5	1	25	0	25	25	25		
γs4	5	1	94	0	94	94	94		
d2-3	9	3	40 26 32		20	70			
d2-3m	2	0	< LOD	< LOD	< LOD	< LOD	< LOD		
d3-4	5	0	< LOD	< LOD	< LOD	< LOD	< LOD		
Gx	5	0	< LOD	< LOD	< LOD	< LOD	< LOD		
h3	4	4	60	66	31	20	159		
Formations z	one Nord	d Pyréné	enne						
n5-6	6	1	18	0	18	18	18		
n7aK	6	0	< LOD	< LOD	< LOD	< LOD	< LOD		

Tableau 14 - Statistiques simples pour les teneurs en cuivre exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en cuivre pour chaque formation géologique. La LQ du cuivre est de 15 mg/kg dans le meilleur des cas (temps de mesure de 60 secondes sur des échantillons broyés < 100 μm)

• Le Nickel

Globalement les mesures pXRF montrent que les teneurs mesurées sont au-dessus des concentrations moyennes dans les sols (19 mg/kg, Sposito, 1989). Les analyses ICP confirment cette tendance sauf pour deux formations (γ s4 et d₁) qui sont inférieures. D'après les analyses ICP, la plupart des concentrations sont comprises entre 2,5 à 4 fois la concentration moyenne présentée dans le Tableau 15, mais quatre formations présentent des concentrations supérieures à 100 mg/kg (s₁₋₃, d₂, d₄₋₅ et d₅₋₇).

Comme pour les éléments précédents, tous les points mesurés avec le pXRF sont reportés sur la carte de la Figure 53.

Figure 53 - Carte des points échantillonnés pour le nickel

Les statistiques simples des teneurs pour chaque formation géologique sont rassemblées dans le Tableau 15 ci-après.

Lithologie	N Nb		Moyenne	E.T	Médiane	Minimum	Maximum		
Formations I	Dévonien	Nord							
s1-3	6	3	50	13	52	37	62		
d1	6	6	58	19	55	31	82		
d2	6	3	45	18	45	32	57		
d3	9	9	64	20	56	37	93		
d4-5	7	6	64	41	48	28	125		
d5-7	5	4	106	48	114	40	153		
Formations I	Dévonien	Sud							
k1-3	7	5	57	23	43	41	96		
s-d1	5	1	76	0	76	76	76		
γs4	5	1	32	0	32	32	32		
d2-3	9	6	68	13	67	53	86		
d2-3m	2	2	89	10	89	82	96		
d3-4	5	4	64	24	64	36	92		
Gx	5	4	71	9	69	63	82		
h3	4	3	91	57	69	47	156		
Formations zone Nord Pyréné		enne							
n5-6	6	5	64	24	68	32	96		
n7aK	6	2	53	18	53	40	66		

Tableau 15 - Statistiques simples pour les teneurs en nickel exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en nickel pour chaque formation géologique

Le Vanadium

Les mesures pXRF sont très correctement corrélées aux analyses ICP ($r^2 = 0.95$) avec une surestimation autour de 10% en moyenne. Seules deux formations (γ s4 et d₁) ont des concentrations inférieures à la concentration moyenne dans les sols (80 mg/kg, Sposito, 1989). La même tendance a été observée avec le nickel.

Toutes les autres formations à l'exception de s_{1-3} ont des concentrations moyennes comprises entre 1,2 à 2 fois la concentration moyenne du Tableau 16. La formation s_{1-3} présente une concentration moyenne proche de 500 mg/kg (confirmée par les analyses ICP de 433 mg/kg et 639 mg/kg des échantillons N050 et N068, Laperche 2018). Cette formation est connue pour donner des signatures métalliques plus riches que les autres formations.

Les résultats cartographiques sont présentés sur la Figure 54 alors que les données statistiques sont rassemblées dans le Tableau 16.

Figure 54 - Carte des points échantillonnés pour le vanadium

Lithologie	N	Nb	Moyenne	E.T	Médiane	Minimum	Maximum		
Formations D	évonien	Nord							
s1-3	6	6	493	180	403	346	775		
d1	6	6	122	36	130	67	157		
d2	6	5	112	31	125	61	141		
d3	9	9	129	38	131	83	212		
d4-5	7	7	118	33	112	88	184		
d5-7	5	5	133	26	124	103	165		
Formations D)évonien	Sud							
k1-3	7	7	99	24	102	68	132		
s-d1	5	5	54	20	49	30	85		
γs4	5	1	57	0	57	57	57		
d2-3	9	8	126	29	131	82	172		
d2-3m	2	1	135	0	135	135	135		
d3-4	5	5	166	27	166	133	205		
Gx	5	4	117	46	117	68	166		
h3	4	4	151	26	152	122	178		
Formations z	one Nord	d Pyréné	enne						
n5-6	6	6	128	50	143	69	193		
n7aK	6	6	111	16	110	98	138		

Tableau 16 - Statistiques simples pour les teneurs en vanadium exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en vanadium pour chaque formation géologique

• Le Fer

Les teneurs mesurées par pXRF sont correctement corrélées aux données ICP ($r^2 = 0.81$). Les moyennes sont généralement supérieures à la concentration moyenne dans les sols (2,5%, Sposito, 1989) mais assez variables dans une même formation.

Les résultats cartographiques sont illustrés par la Figure 55.

Toutes les formations ont des teneurs comprises entre 1 à 3 fois la concentration moyenne présentée dans le Tableau 17, sauf pour la granodiorite $(1,5 \pm 1,1\%)$.

Figure 55 - Carte des points échantillonnés pour le fer

Lithologie	N	Nb	Moyenne	E.T	Médiane	Minimum	Maximum		
Formations D	Dévonien	Nord							
s1-3	6	6	7,3	7,8	4,7	2,0	22,8		
d1	6	6	4,0	1,9	4,4	1,2	6,4		
d2	6	6	3,5	1,2	3,5	2,1	5,7		
d3	9	9	3,9	0,8	3,9	2,6	5,3		
d4-5	7	7	3,4	1,3	3,4	2,1	5,8		
d5-7	5	5	5,5	3,1	5,0	2,4	9,7		
Formations D)évonien	Sud							
k1-3	7	7	3,8	2,0	3,5	2,2	7,9		
s-d1	5	5	2,1	0,8	1,8	1,5	3,4		
γs4	5	5	1,5	1,1	1,3	0,4	3,3		
d2-3	9	9	4,5	1,4	4,1	2,7	6,9		
d2-3m	2	2	3,6	3,9	3,6	0,9	6,4		
d3-4	5	5	4,9	1,6	5,0	2,7	7,1		
Gx	5	5	3,6	1,8	3,9	0,6	5,4		
h3	4	4	4,2	1,2	3,9	3,2	5,9		
Formations zone Nord Pyrénée		enne							
n5-6	6	6	3,3	1,2	3,8	2,0	4,6		
n7aK	6	6	2.6	0.3	2.6	2.4	3.1		

Tableau 17 - Statistiques simples pour les teneurs en fer exprimées en % : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en fer pour chaque formation géologique

En conclusion, l'utilisation du pXRF permettant de collecter un grand nombre de mesures sur le secteur du Pic de la Fourque a permis de déterminer des gammes de concentrations en fonction des formations géologiques.

Toutefois, certains éléments sont difficilement détectés en XRF quand les teneurs sont faibles ou/et du même ordre de grandeur que la limite de détection des pXRF. C'est par exemple le cas pour le tungstène (W), le bismuth (Bi), le cadmium (Cd) et l'antimoine (Sb). Les analyses par spectrométrie ICP ont montré que pour le tungstène, le bismuth et l'antimoine, les concentrations sont inférieures à la limite de quantification qui est de 10 mg/kg pour ces trois éléments.

- **Pour le cadmium**, la plupart des formations ont des concentrations inférieures à la limite de quantification (2 mg/kg) et les autres de l'ordre de la limite de quantification (Dévonien d₂₋₃, d₄₋₅ et d₅₋₇) à légèrement plus élevée jusqu'à 5 mg/kg (Silurien s₁₋₃).
- **Pour le plomb**, les moyennes sont relativement homogènes et sont comprises entre 18 ± 9 mg/kg et 47 ± 34 mg/kg avec une seule formation présentant une valeur nettement plus élevée à 225 mg/kg (calcaires amygdalaires d₅₋₇).
- Pour le zinc, les moyennes sont très différentes d'une formation à une autre. Les formations k₁₋₃ (formation d'Evol) et granodiorite γs4 présentent les gammes les plus faibles : 16 ± 3 mg/kg et 34 ± 21 mg/kg respectivement, alors que la plupart des formations du Dévonien Nord ont des gammes supérieures à 100 mg/kg, voire 200 mg/kg.
- Pour l'arsenic, les formations géologiques du Dévonien Nord (d₁, d₂, d₃, d₄₋₅), celle de la formation cambrienne d'Evol au sud k₁₋₃, et du Dévonien Sud (d₂₋₃, d_{2-3m},) ont des moyennes inférieures à 30 mg/kg. Les autres formations du Silurien s₁₋₃, des calcaires amygdalaires d₅₋₇, de la granodiorite γs₄ et des pélites bleutées d₃₋₄ ont des teneurs moyennes comprises entre ~40 mg/kg et 112 mg/kg avec des écarts-types très importants indiquant des teneurs très variables dans ces formations.

- Pour le cuivre, les moyennes sont situées entre < LOD et 34 mg/kg pour la plupart des formations. Trois formations (s₁₋₃, d₂₋₃ et h₃) ont des moyennes entre 47 mg/kg et 60 mg/kg et deux autres (d₅₋₇ et γs₄) ont des teneurs proches de 100 mg/kg sachant que ces cinq formations sont assez hétérogènes.
- Pour le nickel, les analyses ICP montrent que la granodiorite γs4 et les alternances schistes et calcaires du Dévonien Nord d₁ présentent des concentrations faibles (< 20 mg/kg). Pour les autres formations, la plupart des concentrations sont comprises entre 34 mg/kg et 81 mg/kg. Seules quatre formations présentent des concentrations supérieures à 100 mg/kg (le Silurien s₁₋₃, et le sommet stratigraphique du Dévonien Nord d₂, d₄₋₅ et d₅₋₇).
- Pour le vanadium, seules 2 formations (γs4 et d₁) ont des moyennes inférieures à 60 mg/kg. La même tendance a été observée avec le nickel. Toutes les autres formations à l'exception des schistes du Silurien s₁₋₃ ont des moyennes entre 99 ± 24 mg/kg et 166 ± 27 mg/kg. À noter que cette formation d'âge silurien s₁₋₃ présente une concentration moyenne proche de 500 mg/kg.
- Pour le fer enfin, les moyennes sont généralement comprises entre 2,6% et 5,5% et assez variables dans une même formation. La granodiorite à la moyenne la plus faible (1,5 ± 1,1%) et les schistes du Silurien s₁₋₃ la moyenne la plus élevée (7,3 ± 7,8%) due à la présence de sulfures de fer disséminés.

4 CARACTERISATION DE L'ETAT DES MILIEUX

Pour cette étude, la caractérisation de l'état des milieux a été limitée d'une part à l'analyse de la partie aval du site minier de Pic de la Fourque au niveau du ruisseau des Cougnets et du Salat jusqu'à l'entrée du village Seix et d'autre part à l'étude spécifique des travaux de recherche de Saubé et Hoque Rabé (annexes 3 à 7).

4.1 Les travaux de Saube et de Hoque-Rabé

4.1.1 Objectif du diagnostic environnemental des secteurs de Saubé et Hoque-Rabé

Le permis de recherches pour plomb-zinc de Saubé a été intégré à la présente étude dans la mesure où il s'inscrit dans le secteur minier du Pic de la Fourque et peut contribuer à un impact à l'aval des anciennes zones d'exploitation minières.

Le diagnostic environnemental mené sur les sites de Saubé et Hoque-Rabé comprend la caractérisation des sources de pollution présentes (dépôts de roches stériles faiblement minéralisées) et des zones potentiellement impactées (avec prélèvements et mesures sur les milieux pertinents : sols, eaux superficielles, sédiments et végétaux).

4.1.2 Méthodologie d'échantillonnage

Dans le cadre de ce diagnostic, des prélèvements ont été réalisés en juin 2017 sur les résidus miniers (dépôts de stériles), les sols, les eaux superficielles, les sédiments et les végétaux.

4.1.2.1 Sols et résidus miniers

Pour les résidus, 7 échantillons ont été prélevés :

- 5 échantillons au droit des dépôts identifiés sur le secteur de Saubé ;
- 2 échantillons au droit des dépôts identifiés sur le secteur de Hoque-Rabé.

Ces résidus sont majoritairement constitués de matériaux sableux de granulométrie millimétrique avec présence de fragments plus grossiers.

Pour les sols, 12 échantillons ont été prélevés :

- 2 en amont éloigné du secteur de Saubé, considéré comme hors influence minière (P001 et P018) ;
- 3 en amont immédiat du secteur de Saubé, au niveau de zones affleurantes (P003, P005 et P006) ;
- 5 en aval des dépôts miniers de Saubé (P009, P012, P020, P023 et P025) ;
- 2 en amont immédiat des dépôts de Hoque-Rabé (P035 et P036).

Les prélèvements ont été réalisés à l'aide d'une pelle manuelle. La localisation des points de prélèvement est présentée sur la Figure 56.

Les échantillons prélevés ont été envoyés au laboratoire EUROFINS et ont été analysés pour les paramètres suivants :

- Carbone organique total (COT) et pH;
- Silicium, Aluminium, Calcium, Sodium, Potassium;

- métaux et métalloïdes : Antimoine, Argent, Arsenic, Baryum, Cadmium, Chrome, Cobalt, Cuivre, Etain, Fer, Magnésium, Manganèse, Molybdène, Nickel, Plomb, Titane, Tungstène, Vanadium, Zinc.

L'échantillon de résidu, prélevé au droit du dépôt principal (P015), a également fait l'objet d'analyses pour les paramètres suivants : granulométrie, indice hydrocarbures totaux C10-C40, HAP et PCB.

Figure 56 - Localisation des prélèvements de sols et résidus, secteurs de Saubé et Hoque-Rabé

Figure 57 - Photos montrant les aspects des résidus du secteur de Saubé

4.1.2.2 Eaux de surface et sédiments

Dans le cadre de cette étude sur les sites de Saubé et Hoque Rabé, 12 prélèvements d'eau et 1 prélèvement de sédiment ont été effectués au total.

- Pour les eaux :
 - 2 prélèvements (ESU-101 et ESU-F101) ont été effectués au niveau d'une source liée aux anciens travaux miniers. Cette émergence s'écoule le long d'un dépôt puis dans la pente herbeuse. L'eau est utilisée pour l'alimentation de la cabane pastorale (tous usages dont boisson);
 - 6 prélèvements (ESU-102, ESU-F102, ESU-103, ESU-F103, ESU-105 et ESU-F105) ont été effectués au niveau d'un ruisseau en aval du secteur de Saubé, jusqu'à sa confluence avec le ruisseau des Cougnets ;
 - 4 prélèvements ont été réalisés dans la Hoque du Rabé, en aval immédiat du secteur minier de Hoque-Rabé (ESU106 et ESU-F106) puis au niveau de la confluence avec le ruisseau des Cougnets (ESU06 et ESU-F06).
- Pour les sédiments :
 - 1 prélèvement a été réalisé au niveau de la confluence avec de la Hoque du Rabé et du ruisseau des Cougnets (SED-03).

La localisation des points de prélèvement est présentée sur la Figure 58.

Figure 58 - Localisation des prélèvements d'eaux et de sédiments, secteurs de Saubé et Hoque-Rabé

Les échantillons d'eaux ont été prélevés selon les règles de l'art, filtrés sur site et non filtrés, puis conditionnés pour être analysés au laboratoire EUROFINS. Les analyses complètes ont porté sur les phases dissoutes des principaux anions (sulfates, chlorures, nitrates, nitrites), des éléments Na, K, Ba, P, Si, Mg, Ca, d'une série de 20 métaux ainsi que sur des molécules organiques telles que les hydrocarbures (indice C10-C40), les HAP, les Cyanures totaux ainsi que les PCB (7 éléments). Les analyses ont été complétées par une mesure de pH ainsi que de la matière en suspension (MS).

L'échantillon de sédiment a été prélevé à la pelle manuelle sur les matériaux fins vaseux et limoneux déposés au pied d'un seuil. Après envoi au laboratoire d'analyses EUROFINS, il a fait l'objet d'un classement granulométrique (5 classes de 0,02 μ m à 2000 μ m) puis a été analysé pour l'ensemble des paramètres suivants :

- Carbone organique total (COT);
- Cyanures totaux (CNt) ;
- Silicium, éléments alcalins et alcalino-terreux (Ca, Na, K) ;
- 20 métaux et métalloïdes ;
- Indice hydrocarbures totaux C10-C40 ;
- HAP;
- PCB.

Emergence minière de Saubé (ESU101)

Sédiments à la confluence Hoque de Rabé / ruisseau des Cougnets (SED3)

Figure 59 - Points de prélèvements d'eaux et de sédiments

4.1.2.3 Végétaux

Neuf prélèvements des végétaux (plantes herbacées) ont été effectués dans le secteur de Saubé :

- 2 en amont éloigné du secteur de Saubé, considéré comme hors influence minière (P002 et P019) ;
- 2 en amont immédiat du secteur de Saubé, au niveau de zones affleurantes (P004, P007) ;
- 5 en aval des dépôts miniers de Saubé (P010, P013, P021, P024 et P026).

Les échantillons prélevés ont été envoyés au laboratoire EUROFINS et ont été analysés pour les paramètres suivants : Antimoine, Arsenic, Cadmium, Cuivre, Fer, Plomb et Zinc.

La localisation des points de prélèvement est présentée sur la Figure 60.

Figure 60 - Localisation des prélèvements de végétaux, secteur de Saubé

4.1.3 Résultats

4.1.3.1 Sols et résidus

Les résultats des analyses effectuées sur les sols et les résidus sont présentés dans le tableau suivant, et comparées aux valeurs ASPITET définies pour les éléments As, Cd, Co, Cr, Cu, Ni, Pb et Zn.

	SECTEUR SAUBE																									
Echantillon	Localisation du prélèvement	сот	AI	Sb	Ag	As	Ва	Cd	Ca	Cr	Co	Cu	Sn	Fe	Mg	Mn	Мо	Ni	Pb	к	Si	Na	ті	w	v	Zn
P001	Sols hors	52 500	7 920	2,74	<5.00	13,6	44,1	< 0.40	993	8,29	9,38	8,93	<5.00	36 200	1 600	584	<1.00	13,3	29,1	531	48	44,8	8,37	<10.0	12,5	102
P018	influence	38 900	12 800	5,01	<5.00	21,2	40,9	0,57	904	15,2	11,8	12,1	<5.00	33 800	4 180	407	<1.00	25,4	40,8	526	473	59,3	12,5	<10.0	16,9	128
P008		16 100	18 000	95	24,4	67,5	12,5	89	1 780	20,1	13,8	190	<5.00	180 000	7 000	8 760	7,29	75,4	16300	421	2 680	20,6	28	12,8	64,6	34 500
P011		3 450	10 900	25,9	7,35	40	11,8	45,8	92 000	11,7	30,4	68,2	<5.00	58 700	7 010	1 990	<1.00	46,4	6730	608	2 110	31,9	17,9	<10.0	13,5	26 100
P014	Résidus	15 000	20 600	120	<5.00	100	20,2	53,9	48 800	27,7	56,2	88,3	<5.00	75 900	15 800	2 370	9,89	89,1	2820	597	536	65,2	19,6	<10.0	39,7	22 600
P015		3 660	26 300	5,54	<5.00	9,66	17,3	0,51	6 160	33,4	18,3	30,9	<5.00	44 200	10 700	251	<1.00	47,7	63,1	612	1 200	88,9	5,53	<10.0	28,5	229
P022		4 250	19 700	11,7	<5.00	74,1	21,4	0,81	64 200	24,3	58,4	56,6	<5.00	48 900	9 310	657	<1.00	61,3	177	700	399	105	9,86	<10.0	22,5	307
P003		106 000	17 300	6,96	<5.00	26,4	25,9	< 0.40	636	24,2	15,2	14,5	<5.00	46 900	4 130	722	<1.00	20,2	97,5	817	303	97,1	28,8	<10.0	37	97
P005		129 000	11 800	4,29	<5.00	18,4	174	< 0.40	998	16	8,16	11,6	<5.00	31 000	2 140	99	<1.00	11,8	57,3	705	276	94,2	23,2	<10.0	33	67
P006		72 700	11 700	10,8	<5.00	25,3	23,8	1,02	698	15,1	12,9	15,8	<5.00	45 200	2 080	849	<1.00	18,9	1190	559	262	54,6	21,8	<10.0	22,9	640
P009	Sols	98 200	13 500	9,19	<5.00	27,8	29,6	1,2	1 150	16,2	12,6	19,6	<5.00	50 400	2 460	645	<1.00	22,3	667	740	415	53,8	28,6	<10.0	24,5	580
P012	5013	105 000	18 400	7,19	<5.04	28,3	31,4	0,6	1 260	23,5	16,4	19,1	<5.04	38 000	4 510	493	<1.01	25,1	103	652	335	78,5	26,2	<10.1	29,6	221
P020		97 000	17 300	4,58	<5.08	19	37,8	0,48	1 910	31,9	22,7	25,5	<5.08	38 900	4 870	589	<1.02	30,3	73,2	612	299	83,7	29,7	<10.2	30,9	435
P023		123 000	17 300	5,76	<5.00	18,2	40,6	0,77	3 220	22,8	10,2	14,8	<5.00	33 700	2 740	302	<1.00	15,8	114	809	335	117	26,5	<10.0	32,8	158
P025		132 000	18 300	10,7	<5.02	25,4	101	< 0.40	1 320	24	13,5	20,1	<5.02	44 500	3 660	825	<1.00	19,1	158	953	361	94,4	35,1	<10.0	38	280
											SECT	EUR HOO	QUE-RABE													
Echantillon	Localisation du prélèvement	сот	AI	Sb	Ag	As	Ва	Cd	Ca	Cr	Co	Cu	Sn	Fe	Mg	Mn	Мо	Ni	Pb	к	Si	Na	ті	w	v	Zn
P037	Róciduc	57 500	15 700	5,32	<5.38	58,2	29,1	< 0.43	32 000	19,4	55,2	75,7	<5.38	45 200	9 890	708	<1.08	72,6	69	536	2 010	95,2	17,2	<10.8	18	171
P038	nesidus	69 800	15 100	2,8	<5.13	52	34,7	2,26	21 100	18	30,7	39,9	<5.13	37 400	7 260	626	<1.03	35,6	70,9	479	1 790	37,6	27,1	18,3	16,9	494
P035	Cala	121 000	8 480	<1.01	<5.04	12,9	21,2	< 0.40	2 960	11,1	<1.01	8,06	<5.04	17 600	1 850	133	<1.01	9,93	30,9	410	205	52,9	18,7	<10.1	20,6	54
P036	50IS	132 000	15 700	3,03	<6.05	40,8	18,7	< 0.48	1 150	22	7,62	21,3	< 6.05	48 100	1 740	143	<1.21	16	73,4	623	423	70,3	39,9	<12.1	46,9	66

En jaune : concentration supérieure aux valeurs ASPITET définies pour les sols sans anomalies géochimiques En rose : concentration supérieure aux valeurs ASPITET définies pour les sols à anomalies modérées En rouge : concentration supérieure aux valeurs ASPITET définies pour les sols à fortes anomalies

 Tableau 18 - Résultats des analyses effectuées sur les sols et résidus des secteurs de Saubé et Hoque-Rabé

Dans le secteur de Saubé, les deux échantillons de sol prélevés *hors influence minière* (P001 et P018) ne présentent aucune anomalie notable. En particulier, les concentrations mesurées en plomb, zinc, cadmium et arsenic sont de l'ordre de grandeur des valeurs ASPITET¹⁰ pour les sols ordinaires (sans anomalies géochimiques).

Les 5 échantillons prélevés dans les dépôts de résidus présentent des marquages en **zinc** (teneurs comprises entre 279 mg/kg MS et 34 500 mg/kg MS), en **plomb** (entre 63 mg/kg MS et 16 300 mg/kg MS) et en **cadmium** (entre 0,51 mg/kg et 89 mg/kg). L'échantillon P008 prélevé au droit du dépôt le plus en amont (altitude 2 060 m NGF) présente les teneurs les plus élevées. De légers marquages en arsenic et en cuivre sont aussi observés sur ces échantillons.

Aucun impact en hydrocarbures (HCT C10-C40 et HAP) et en PCB n'a été mis en évidence sur l'échantillon de résidus P015.

Les 8 échantillons de sols prélevés à proximité des dépôts de Saubé présentent un marquage en plomb et en zinc et, dans une moindre mesure, en cadmium et arsenic. Les échantillons les plus concentrés (P006 et P008) ont été prélevés à proximité du dépôt amont (dépôt le plus concentré). Ces échantillons présentent des teneurs respectives de 1 190 mg/kg MS et 667 mg/kg MS pour le plomb et 640 mg/kg MS et 580 mg/kg MS pour le zinc.

Dans le secteur de Hoque-Rabé, les teneurs mesurées dans les sols et les résidus sont moindres que celles observées sur Saubé. Seul l'échantillon de résidus P038 présente des teneurs notables en cadmium (2,26 mg/kg Ms) et en zinc (494 mg/kg MS). Aucune anomalie significative n'est mesurée sur les autres échantillons prélevés.

Les résultats des analyses en plomb, zinc et cadmium sont représentés sur les figures suivantes.

¹⁰ Etude de l'INRA portant sur les teneurs totales en éléments traces métalliques dans les sols.

Figure 61 - Teneurs en plomb mesurées dans les sols des secteurs de Saubé et Hoque-Rabé

Figure 62 - Teneurs en zinc mesurées dans les sols des secteurs de Saubé et Hoque-Rabé

Figure 63 - Teneurs en cadmium mesurées dans les sols des secteurs de Saubé et Hoque-Rabé

4.1.3.2 Eaux de surface

Les analyses effectuées sur les 12 échantillons prélevés dans les secteurs de Saubé et de Hoque-Rabé sont présentées en annexe 6. Elles ne mettent pas en évidence de concentrations anormalement élevées ni d'évolution notable des concentrations entre l'amont et l'aval des cours d'eau.

En particulier, les concentrations mesurées au niveau de la source du secteur de Saubé (échantillons ESU-101 et ESU-F101) sont conformes aux valeurs définies par l'arrêté du 11/01/2007 relatif à la qualité des eaux destinées à la consommation humaine, pour les paramètres analysés. On rappellera que l'eau de cette source est utilisée pour l'alimentation de la cabane pastorale (tous usages dont boisson).

4.1.3.3 Sédiments

L'échantillon de sédiment SED3 a été prélevé dans la Hoque du Rabé, en amont de sa confluence avec le ruisseau des Cougnets (P118).

Les résultats complets des analyses de sédiments sont présentés en annexe 7.

Ces résultats mettent en évidence un impact modéré en zinc (324 mg/kg MS). Bien que cet élément n'ait pas été détecté dans les échantillons d'eau prélevés dans le ruisseau de la Hoque de Rabé, la teneur mesurée dans les sédiments est vraisemblablement liée aux résidus de Hoque-Rabé qui présentent des teneurs relativement élevées en zinc.

Les prélèvements et analyses de sédiments réalisés en aval du point SED3 sont traités dans la partie 4.2.2.3. Ils montrent une atténuation des impacts en zinc vers l'aval.

Par ailleurs, aucun impact en cyanures, hydrocarbures (HCT, HAP) ou PCB n'a été mis en évidence au droit du point SED3.

4.1.3.4 Végétaux

Les analyses effectuées sur les 9 échantillons de végétaux prélevés dans le secteur de Saubé sont présentées dans le tableau suivant.

On observe que les végétaux prélevés à proximité des dépôts présentent des concentrations en zinc, plomb et cadmium plus élevées que ceux prélevés hors influence minière. Toutefois les concentrations mesurées restent modérées et dans la gamme basse des valeurs habituellement mesurées dans les végétaux d'après une étude de l'ADEME¹¹ et inférieures aux valeurs règlementaires concernant l'alimentation des animaux (Tableau 19).

		Localisation		SECTEUR SAUBE								
				hors influence		amont dépôts		aval dépots				
		Ref_Unique		P002	P019	P004	P007	P010	P013	P021	P024	P026
Paramètre	Unité	Valeurs de comparaison										
		1	2									
Antimoine (Sb)	mg/kg			<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,05
Arsenic (As)	mg/kg	0,01 - 0,3	2	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Cadmium (Cd)	mg/kg	0,03 - 0,8	1	<0,005	0,025	<0,005	0,028	0,038	0,021	0,018	0,014	0,014
Cuivre (Cu)	mg/kg	2,4 - 10		1,7	1,4	1,4	1,1	1,1	1,2	1,6	1,4	1,5
Fer (Fe)	mg/kg			14		14	11	12	32			
Plomb	mg/kg	0,3 - 6,4	10	<0,05	<0,05	<0,05	1,5	1,5	0,12	0,1	0,21	0,17
Zinc (Zn)	mg/kg	12-380		9,4	9,5	8,5	13	17	17	31	14	11

1 : Concentrations « typiques » dans les végétaux (ADEME, 2005)

2 : Teneurs maximales admissibles dans les aliments pour animaux (directive 2002/32/CE du 7/05/2002)

Tableau 19 - Résultats des analyses effectuées sur les végétaux du secteur de Saubé

4.2 Aval du site minier de Pic de la Fourque

4.2.1 Objectif et méthodologie

Cette étude a eu pour objectif d'obtenir une évaluation semi-quantitative de la **qualité des sols, des eaux et sédiments** situés dans le périmètre d'investigation de l'étude, à l'aval du site minier du Pic de la Fourque.

1) Pour les sols, les mesures ont été réalisées par spectrométrie de fluorescence X (pXRF) portable. Un contrôle interne des résultats a permis d'écarter les mesures considérées comme non exploitables et/ou non fiables et des droites de calibration « mesures fluo-X vs analyses ICP » ont été réalisées. Les prélèvements solides et les analyses de laboratoire nécessaires à l'élaboration de ces droites ont été pris en charge par le BRGM. Dans ce cadre, GEODERIS a sélectionné 20 analyses de solides portant sur les éléments typiques des signatures géochimiques mises en évidence (tungstène, plomb, arsenic, cuivre, zinc, fer, cadmium, vanadium et étain).

Au cours de cette campagne, 128 points de mesure au pXRF (repérés n200 à n327 dont 3 points avec plusieurs mesures à des profondeurs différentes), soit 132 mesures au total et 59 prélèvements de solide (sol, déchets miniers sédiment), ont été effectués sur le terrain.

La zone d'étude a été divisée en 11 secteurs organisés selon le même transect que celui utilisé pour la détermination du fonds pédogéochimique, depuis l'aval immédiat des verses à résidus de traitement de l'ancienne mine de Salau au sud jusqu'à l'entrée du village de Seix au nord (voir carte de la Figure 1 du chapitre 1).

<u>Les conditions opératoires</u> ainsi que la description du spectromètre pXRF utilisé sont détaillées dans le document BRGM référencé 2018-010-PA-LAB-EXP (Augé, 2018). Lorsqu'un couvert végétal est présent, celui-ci est retiré (précisé dans la description

¹¹ « Contamination des sols. Transferts des sols vers les plantes ». ADEME, 2005. EDP Sciences.

des points de mesure). Le prélèvement de sol pour l'analyse se fait sur une surface d'environ 400 à 600 cm² et à une profondeur de 5 à 10 cm. Le sol est tamisé à 2 mm avec si besoin un émottage, retrait des racines et des végétaux puis homogénéisé. Un tas compacté est réalisé avant d'être analysé par pXRF. Si au cours du creusement du sol, différents horizons apparaissent, ceux-ci sont préparés et analysés séparément.

Dans le cas d'un prélèvement pour analyse en laboratoire, la totalité de la fraction tamisée est conservée en sac.

Parfois, les sols sont trop humides, argileux ou collants et ne permettent pas le tamisage. Dans ce cas, seuls les éléments grossiers, (racines, végétaux, cailloux) ont été retirés manuellement avant l'analyse des sols par pXRF.

Les limites de la méthode sont également bien connues et sont confirmées par les contrôles analytiques en laboratoire (ICP/AES). Les comparaisons entre les 2 types d'analyses (analyses terrains et laboratoires) donnent dans l'ensemble des droites de corrélation satisfaisantes. On notera que :

- le tungstène est sous-dosé d'environ 50% mais la dispersion autour de la droite de corrélation est bonne avec un r² de plus de 0,99 ;
- l'arsenic est surdosé d'environ 22% et la dispersion autour de la droite de corrélation est bonne avec un r² de plus de 0,98 ;
- lorsque la teneur en tungstène ne dépasse pas 1000 mg/kg, le cuivre est correctement dosé et la dispersion autour de la droite de corrélation est bonne avec un r² de plus de 0,97 ;
- le fer est surdosé de 32% et la dispersion autour de la droite de corrélation est bonne avec un r² de plus de 0,91 ;
- le plomb est sous-dosé de 26% et la dispersion autour de la droite de corrélation est bonne avec un r² de plus de 0,93. À noter que les teneurs mesurées sur le terrain sont quasiment toutes inférieures à 100 mg/kg;
- le zinc est sous-dosé de 22% et la dispersion autour de la droite de corrélation est moyenne avec un r² de plus de 0,87. Lorsque la concentration mesurée en tungstène est supérieure à quelques centaines de mg/kg, la teneur en zinc n'est pas mesurable (interférence avec le tungstène).

Enfin, neuf mesures ont été doublées en mode minier¹² lorsque les teneurs en tungstène et/ou en fer étaient élevées.

Les éléments molybdène, sélénium, argent, antimoine, palladium, cobalt, étain et nickel ont systématiquement présenté des teneurs inférieures à la limite de détection et n'ont donc pas été pris en compte dans les interprétations.

2) Pour les eaux, 18 prélèvements ont été centrés sur la rivière le Salat et ses principaux affluents dont le torrent des Cougnets (annexe 5).

Les échantillons d'eaux ont été prélevés selon les règles de l'art, filtrés et non filtrés sur site, puis conditionnés pour être analysés au laboratoire EUROFINS. Les analyses complètes ont porté sur les phases dissoutes des principaux anions

¹² Le spectromètre de fluorescence X portable (pXRF) utilisé pour cette étude dispose des modes « Sol » et « Minier » :

mode « Sol » : une trentaine d'éléments est analysée dans les gammes de teneurs en traces : depuis la limite inférieure (LOD), qui varie entre 5 mg/kg et 500 mg/kg selon l'élément et la matrice, et la limite supérieure, qui peut atteindre plusieurs dizaines de %,

⁻ mode « Minier » : plus adapté aux éléments majeurs dont les concentrations sont de quelques % à quelques dizaines de %. Ce mode peut être utilisé aussi pour les éléments traces non analysés en mode sols (Bi, Nb, etc.).
(sulfates, chlorures, nitrates, nitrites), des éléments Na, K, Ba, P, Si, Mg, Ca, d'une série de 20 métaux ainsi que sur des molécules organiques telles que les hydrocarbures (indice C10-C40), les HAP, les Cyanures totaux ainsi que les PCB (7 éléments). Les analyses ont été complétées par une mesure de pH ainsi que de la matière en suspension (MS) (Annexe 6).

3) Pour les sédiments, un total de 11 échantillons a été prélevé dans le lit des deux principaux cours d'eau du torrent des Cougnets et de la rivière du Salat, potentiellement impactés par les anciennes activités minières.

Parmi ces échantillons, comme l'indique la carte de localisation des prélèvements en annexe 5, deux sont situés sur le torrent des Cougnets à l'aval immédiat des anciennes installations de stockage de résidus (Sed 01 et 03) et Sed 08 est localisé sur le Salat en amont du village de Salau. Les échantillons Sed 07 et Sed 09 ont été prélevés sur le Salat à l'aval immédiat du village de Salau. Trois autres échantillons sont localisés sur le Salat entre Salau et Couflens (Sed 04, 05 et 06) et les trois derniers ont été prélevés encore plus à l'aval au pont de la Taulé (Sed 12) et au lieudit Moulin Lauga (Sed 11 et 10).

Les échantillons ont été prélevés selon les règles de l'art sur les matériaux fins vaseux et limoneux déposés sur les bordures du lit des cours d'eaux. Après envoi au laboratoire d'analyses EUROFINS, ils ont subi un classement granulométrique (5 classes de 0,02 µm à 2000µm) puis ont été analysés pour l'ensemble des paramètres suivants :

- COT, CNt, Silicium, éléments alcalins et alcalino-terreux (Ca, Na, K);
- 20 métaux et métalloïdes ;
- les hydrocarbures et Indice hydrocarbures (C10-C40), les HAP et les PCB.

Les résultats analytiques obtenus sur les sédiments sont présentés dans l'annexe 7.

4.2.2 Principaux résultats

4.2.2.1 Sols

4.2.2.1.1 Zone d'étude et secteurs investigués

Les 11 secteurs investigués et le nombre de mesures réalisées sont présentés dans le Tableau 20 suivant. Une description macroscopique des points de mesure ainsi que leur localisation géographique sont fournies dans le document BRGM référencé 2018-010-PA-LAB-EXP. Un exemple de report des mesures sur carte est présenté sur la Figure 64.

Secteurs	Dénomination	Points de mesures	Remarques
Secteur 1	Mine	30 mesures (n200 à n229)	Aval immédiat des deux digues à résidus de l'ancienne mine de Salau
Secteur 2	Aval Mine	9 mesures (n230 à n238)	Aval plus lointain des digues à résidus le long du torrent des Cougnets
Secteur 3	Salau	34 mesures (n239 à n272)	Village de Salau et zones inondables du Salat
Secteurs 4 et 5	Aval Salau	7 mesures (n273 à n279)	Aval du village le long du Salat
Secteur 6	Couflens	16 mesures (n280 à n296)	Village de Couflens et alentours du Salat
Secteur 7	Aval Couflens	9 mesures (n297 à n299 et n320 à n325)	Terrasses du Salat et terrains inondables
Secteur 8		1 mesure (n326)	Terrasse du Salat
Secteur 9	Pont de la Taule	11 mesures (n310 à n319 et n327)	Terrasses du Salat et champs inondables
Secteur 10	Moulin Langa	10 mesures (n301 à n309)	Champs inondables
Secteur 11	Seix	1 mesure (n300)	Entrée du village

Tableau 20 - Distribution des mesures pXRF dans les 11 secteurs de la zone d'étude

Figure 64 - Exemple de carte rassemblant les mesures pXRF (carré jaune) ainsi que les prélèvements de sols pour analyse de laboratoire (losange violet) sur les terrains situés dans le village de Salau.

4.2.2.1.2 Résultats des mesures sur les sols

Des cartes synthétisant les résultats des mesures pXRF et des analyses de laboratoire pour l'arsenic, le cuivre et le tungstène sont jointes en annexe 3. Les résultats des mesures pXRF sont présentés dans le rapport BRGM 2018-010-PA-LAB-EXP.

Le tableau 21 synthétise les gammes de valeurs mesurées pour les environnements témoins dans le cadre de l'étude pilote de 2011 (Hulot et Aubert, 2011) et du présent diagnostic. Sur ce tableau ont également été reportées pour information les gammes de teneurs en métaux et métalloïdes mesurées sur les sols français dans le cadre du programme ASPITET de l'INRA.

Sur l'ensemble des 132 mesures de effectuées dans le cadre de cette étude, plusieurs points présentent un marquage vis-à-vis des éléments chimiques sélectionnés (Pb, As, W,

Cu, Zn, Ni, Fe) c'est-à-dire des concentrations supérieures ou très supérieures aux valeurs du fonds pédogéochimique.

Comme attendu, des contaminations en arsenic, tungstène, cuivre et fer sont observées à l'aval immédiat ou aux pieds des deux digues à résidus de l'ancienne mine de Salau. Pour l'arsenic, le tungstène et le cuivre les concentrations maximum mesurées au laboratoire au niveau des sols de berges sont élevées à très élevées (respectivement de 1010 mg/kg, 5040 mg/kg et 892 mg/kg; annexes 3 et 4). Ce marquage en arsenic, tungstène et cuivre est confirmé par les analyses pXRF (rapport BRGM 2018-010-PA-LAB-EXP). Ces résultats confirment ceux acquis dans la précédente étude environnementale de 2011 (Hulot et Aubert, 2011) et témoignent de contaminations des sols inondables en bordure du torrent des Cougnets sans doute en relation avec les anciens épisodes de crues dont celui catastrophique de 1982.

Dans le village de Salau, l'essentiel des mesures et analyses se situent dans l'ordre de grandeur des gammes de valeurs des environnements témoins mesurés dans le cadre de la présente étude et de l'étude pilote de 2011 (Figure 64 ; annexe 4 ; tableau 21). Seuls quelques dépassements ponctuels sont observés. C'est notamment le cas du point SOL_38, où les teneurs en arsenic, tungstène et cuivre mesurées au laboratoire sont les plus élevées (respectivement 262 mg/kg, 2840 m/kg et 1380 mg/kg). Ce point est situé à l'amont immédiat du village de Salau au niveau d'une plateforme enherbée et à l'écart de tout enjeu. On notera également sur l'ensemble des points analysés un léger marquage en zinc avec une teneur maximum enregistrée de 520 mg/kg (point SOL_42). Ce marquage, qui est également perceptible en amont du village de Salau après la confluence avec l'Hoque de Rabé est ici attribuable aux prospects amont de Saubé et Hoque-Rabé.

En aval de Salau, les teneurs en métaux et métalloïdes restent globalement peu élevées et se situent, là encore, dans l'ordre de grandeur des gammes de l'environnement témoin (annexes 3 et 4 ; tableau 21). Seuls quelques points se caractérisent par des teneurs plus élevées, comme par exemple le point SOL_58 qui montre une teneur de 108 mg/kg en arsenic, de 834 mg/kg en tungstène et de 239 mg/kg en cuivre.

Comme pour le village de Salau, l'ensemble des points analysés au niveau du village de Couflens présentent des teneurs en métaux et métalloïdes qui se situent dans les gammes de valeurs des environnements témoins (annexes 3 et 4 ; tableau 21). Seuls quelques points présentent des teneurs plus élevées en un ou plusieurs des métaux suivants : plomb, zinc, arsenic, cuivre (prélèvements SOL_57, SOL_58, SOL_62). A noter des teneurs en tungstène mesurées au laboratoire qui sont globalement élevées pour certains des prélèvements effectués au niveau du village de Couflens. Cette anomalie qui n'est observée que pour le tungstène et ne se vérifie pas pour les autres métaux et métalloïdes et qui, de plus, n'est pas confirmée au niveau des mesures pXRF, laisse supposer l'existence d'un problème analytique lié à un surdosage du tungstène lors de l'analyse de laboratoire pour les échantillons concernés (SOL_56b ; SOL_56c ; SOL_59 à SOL_61 et SOL_63).

Plus à l'aval de Couflens, le long de la rivière Salat, les teneurs mesurées restent, là encore, très majoritairement dans les gammes de valeurs des environnements témoins (annexes 3 et 4 et tableau 21). Les points présentant des teneurs plus élevées en métaux et métalloïdes se font de plus en plus rares. Un des prélèvements effectués au niveau du lieu-dit Pont de la Taule, en rive gauche du Salat, illustre ces points particuliers (SOL_69) avec des teneurs plus élevées en arsenic, en tungstène et en cuivre (respectivement 92 mg/kg, 529 mg/kg et 243 mg/kg).

Comme cela a déjà été mentionné précédemment, la présence de ces quelques prélèvements présentant des teneurs en métaux et métalloïdes plus élevées et qui reste ponctuelle sur l'ensemble du profil aval analysé, peut être rattachée à l'existence de

contaminations des sols inondables en bordure de cours d'eau en relation avec les anciens épisodes de crues les plus intenses.

	Environnements témoins (hors influence minière) : <u>Présent diagnostic ⁽³⁾</u>	Environnements témoins (hors influence minière) : <u>étude pilote 2011⁽²⁾</u>	Gammes de valeurs ASPITET (mg/kg)
Arsenic	8 -168 ⁽¹⁾	20 - 209	1 - 25 ^(a) 30 - 60 ^(b) 60 - 284 ^(c)
Plomb	12 - 84(1)	15 - 110	9 - 50 ^(a) 60 - 90 ^(b) 100 - 10180 ^(c)
Zinc	12 - 523 ⁽¹⁾	36 - 319	10 - 100 ^(a) 100 - 250 ^(b) 250 - 11426 ^(c)
Cuivre	< LOD - 159 ⁽¹⁾	15 - 149	2 - 20 ^(a) 20 - 62 ^(b) 65 - 160 ^(c)
Tungstène	< LQ (< 10 mg/kg) ⁽²⁾ et < LOD ⁽¹⁾	24 – 2140*	Absence de valeurs

* : forte valeur obtenue à l'aplomb d'une zone de filon

(a) : sols ordinaires ; (b) : sols à anomalies naturelles modérées ; (c) : sols à fortes anomalies naturelles

⁽¹⁾ : gammes de teneurs min-max basées sur des mesures pXRF (mg/kg).

(2) : gammes de teneurs min-max basées sur des mesures issues d'analyses de laboratoire (mg/kg)

(3) : mesures effectuées sur formations géologiques drainées par les cours d'eaux du Salat et des Cougnets en amont et à l'aplomb de Salau : dévonien nord (d1) et dévonien sud (k₁₋₃, s-d₁, gs₄, d₂₋₃, d₃₋₄, Gx, h₃)

LQ : limite de quantification analytique; LOD : limite de détection de la mesure pXRF

Tableau 21 : gammes de teneurs mesurées au niveau des environnements témoins (étude pilote 2011 et présent diagnostic) ; gammes de teneurs mesurées dans le cadre du programme ASPITET de l'INRA.

4.2.2.2 Eaux de surface

Les résultats analytiques détaillés des prélèvements d'eaux de surface sont présentés en annexe 6. Les pH de ces eaux sont dans l'ensemble légèrement basiques, voisins de 8. Les valeurs de conductivité restent faibles à modérées (comprises entre 85 et 550 µS/cm).

Aucune pollution particulière n'a été détectée sur la base de ces résultats qui sont par ailleurs très similaires quelle que soit la préparation des échantillons (filtrés ou non filtrés).

La carte présentée en annexe 5 synthétise l'évolution des teneurs en arsenic dans les eaux.

4.2.2.3 Sédiments

Les résultats analytiques sur les 11 échantillons de sédiments sont présentés dans les tableaux de l'annexe 7.

Les cartes présentées en annexe 5 synthétisent l'évolution des teneurs en arsenic et en tungstène dans les sédiments.

Globalement, les sédiments analysés du Salat sont riches en fer (entre 3,5% et 5%), en aluminium (entre 1,2% et 2%), en calcium (entre 1% et 4%) et magnésium (entre 0,9% et 1,4%) témoignent du contexte géologique schisteux à calcaro-dolomitique et des nombreuses anomalies avec sulfures de fer décrites dans les chapitres précédents.

Comme attendu, ce sont les sédiments du torrent des Cougnets en contrebas des verses à résidus de l'ancienne mine qui sont les plus contaminés en métaux, notamment SED 01 en dessous de la verse du carreau de la mine qui renferme 2280 mg/kg de tungstène, 346 mg/kg d'arsenic, 395 mg/kg de cuivre et un contenu élevé en fer (5%) et aluminium (1,5%). On note également quelques traces d'hydrocarbures (indice HC de l'ordre de 50 mg/kg). La pollution métallique traduit l'apport particulaire encore actif immédiatement sous la verse du carreau 1230 dont les bassins de rétention sont saturés et de façon moindre sous la verse du Plat des Pommiers.

D'une manière générale, les concentrations en métaux décroissent rapidement vers l'aval puisque la concentration en tungstène est de l'ordre de 175 mg/kg à l'aval de la verse du Plat des Pommiers (SED 02) et n'est plus détectée sur Salau, à l'exception d'une concentration de 125 mg/kg à l'aval du village. Un léger impact est également observé sur l'échantillon de sédiment prélevé au niveau du village de Couflens avec une teneur en tungstène de 103 mg/kg, valeur bien inférieure à la plus forte des teneurs enregistrée dans les sédiments à l'aval immédiat du dépôt du carreau 1230 (2280 mg/kg).

On notera une augmentation en zinc (347 mg/kg) et en plomb (223 mg/kg) dans les sédiments du SED 02 sur le torrent des Cougnets, directement après la confluence du ruisseau drainant les indices de Saubé. Un léger impact par rapport au sédiment témoin (SED_08 : teneur en zinc de 109 mg/kg) reste par ailleurs perceptible uniquement pour le zinc sur l'ensemble des échantillons avals, les teneurs mesurées restant toutefois peu élevées (teneur maximum enregistrée de 324 mg/kg).

5 CONCLUSIONS

Ce diagnostic environnemental préliminaire a permis d'atteindre l'objectif présenté aux membres du CLICS tenu début 2017, à savoir caractériser les milieux à l'aval hydraulique du secteur minier du Pic de la Fourque et déterminer si ces milieux sont impactés ou non par les anciennes activités minières (mine de tungstène de Salau et travaux de recherche pour plomb/zinc de Saubé et de Hoque-Rabé).

Dans une telle démarche, une bonne connaissance des contextes géologique et minier a été essentielle dans la compréhension du comportement des différentes sources potentielles de pollution d'origine minière ou industrielle connexe. Elle a aussi permis de prendre en compte l'influence possible de certaines formations géologiques régionales dans la diffusion naturelle en éléments métalliques indésirables.

Les formations géologiques encaissantes des secteurs minéralisés et présentes dans la zone d'étude ont donc été regroupées dans deux grands groupes principaux :

- les formations à dominance silicoclastique (pélites, schistes et grès) ;
- les formations à dominance carbonatée (calcaires et dolomies).

Les roches magmatiques présentent une étendue d'affleurement assez restreinte principalement localisée à proximité immédiate du gisement de Salau auquel il donne le type du modèle skarn.

Les études géochimiques antérieures montrent que ces formations ont des signatures contrastées aussi bien pour les éléments majeurs que les éléments en trace. Parmi celles-ci, les schistes noirs du Silurien (s₁₋₃) montrent des concentrations assez élevées pour l'ensemble des métaux analysés. Les pélites bleutées sont caractérisées par les plus fortes teneurs en zinc et chrome, alors que plus au sud, la formation cambrienne d'Evol, qui comporte elle-aussi des niveaux riches en sulfures, présente une signature similaire mais atténuée.

Deux grands types de minéralisation sont présents dans la zone d'étude :

- <u>le gisement de tungstène de Salau</u>, un skarn à scheelite développé par l'intrusion de la granodiorite du Pic de la Fourque au sein de formations schisto-carbonatées et carbonatées. La minéralogie est dominée par la pyrrhotite, sulfure de fer qui présente un potentiel acidogène très important, mais plus ou moins tamponné par la gangue carbonatée du minerai et des roches encaissantes. L'arsénopyrite, la chalcopyrite, la pyrite, et la sphalérite sont aussi fréquentes. Ce contenu minéralogique permet d'identifier As, Bi, Co, Cu, Ni, W comme métaux marqueurs potentiels de l'influence de la minéralisation ;
- <u>les indices à plomb et zinc de Saubé et Hoque-Rabé</u> sont des amas de sulfures de type Sedex de très petites tailles n'ayant jamais abouti à une exploitation. Les minéralisations sont principalement composées d'un peu de sphalérite et de galène, accompagnées de chalcopyrite et pyrite. La gangue est quartzeuse. Les marqueurs potentiels des minéralisations sont Zn, Pb, Cu, Ni, et As.

Les données géochimiques de l'Inventaire minier comprennent des échantillons de sédiments de fond de vallon et dans une moindre mesure de sols. Cependant, les résultats sont anciens (antérieurs à 1990) et peu d'éléments ont été analysés. Une réinterprétation rapide de ces résultats souligne les signatures lithogéochimiques régionales typiques.

Les principales sources de pollution identifiées sur le secteur d'étude sont représentées par les anciennes installations de stockage de déchets de la mine de Salau, principalement

matérialisés par les deux verses à résidus de flottation du minerai ainsi que par les verses à stériles de creusement qui s'étagent en altitude entre 1320 m et 1620 m sur le flanc est du ruisseau d'Anglade.

Leur signature géochimique est la même que celle du minerai et de la gangue silicocarbonatée à W, As, Cu, Bi, Co, Ni. Une étude de la nature et du comportement de ces résidus révèle que leur minéralogie dominée par les sulfures de fer et les carbonates contribuent fortement à leur stabilisation chimique par carbonatation et développement d'une carapace de chapeau de fer. Cette stabilisation chimique réduit les phénomènes de lessivage et les entraînements mécaniques dus à l'érosion, et favorise du même coup la forte revégétalisation naturelle des verses, observée depuis près d'une vingtaine d'années.

Les stériles d'exploitation de Salau ou résultant des travaux de creusement comme à Saubé, présentent quant à eux souvent une forte granulométrie (centimétrique à décimétrique) et une faible minéralisation, les rendant ainsi potentiellement moins « impactants ».

La phase informative a aussi souligné l'importance des conditions morpho-climatiques qui prévalent dans cette région de montagne sensible sur le plan environnemental. Des épisodes de crues exceptionnelles ont notamment eu lieu pendant la période d'exploitation de la mine. Le plus dévastateur a eu lieu en novembre 1982 et a entraîné une pollution importante par les résidus transportés ainsi que par des coulées de stériles, du bassin versant du Cougnets et plus à l'aval de celui du Salat.

L'utilisation du pXRF pour collecter un grand nombre de mesures sur le secteur du Pic de la Fourque afin d'établir les Fonds PédoGéochimiques par formation lithologique selon le transect régional choisi, a permis de déterminer des gammes de concentrations en fonction des formations géologiques. Toutefois, certains éléments appartenant à la signature géochimique des minéralisations du gisement de Salau (W, Bi) ou des prospects de Saubé (Cd associé étroitement au Zinc) révèlent parfois des concentrations très faibles ou difficilement quantifiables (W, Bi, Sb). Des cartes de résultats par élément chimique sélectionné (Pb, As, Cu, Zn, Ni, V et Fe) ont pu être produites et confirmer les résultats de la synthèse géologique. De tous ces résultats, il faut retenir :

- que le fond pédogéochimique de la zone d'étude et du secteur du Pic de la Fourque n'est pas homogène suivant les formations car certaines d'entre elles sans être « anomaliques », présentent des teneurs un peu plus élevées que les valeurs moyennes;
- que certaines formations sont plus riches que d'autres en métaux et métalloïdes. C'est en particulier le cas de la formation des schistes noirs du Silurien (S₁₋₃) naturellement riche en plusieurs éléments polymétalliques (V, Cu, Ni, As, Fe, etc.). Cette formation affleurant au nord de Couflens selon une bande est-ouest est connue pour donner des signatures métalliques plus riches que les autres formations. C'est aussi le cas de la formation d₅₋₇ du Dévonien Nord composée de calcaires amygdalaires (à griottes), plus particulièrement enrichis naturellement en Fe, Mn, Cu et As.

Le diagnostic environnemental mené en amont du secteur du Pic de la Fourque, sur les secteurs de Saubé et de Hoque Rabé a mis en évidence :

 sur le secteur de Saubé : des teneurs très élevées en plomb et en zinc et dans une moindre mesure en cadmium dans les dépôts de résidus identifiés (teneurs maximum respectivement mesurées 34500 mg/kg, 16300 mg/kg et 89 mg/kg). Les sols présents à proximité immédiate de ces dépôts présentent également un marquage en zinc et en plomb (teneurs maximum respectivement mesurées de 640 mg/kg et 1190 mg/kg). Aucun impact notable n'est relevé dans les végétaux prélevés dans ce secteur, ni dans les eaux superficielles. En particulier, l'eau prélevée au niveau de la source minière et utilisée pour divers usages (dont boisson) au niveau d'une cabane pastorale présente des concentrations en métaux conformes aux seuils définis pour les eaux destinées à la consommation humaine (arrêté du 11 janvier 2007);

 sur le secteur de Hoque-Rabé : des marquages en zinc et en cadmium sur un échantillon de résidus. Aucune anomalie n'a été mesurée sur les deux échantillons de sol prélevés ainsi que dans les eaux superficielles. Un impact en zinc est observé dans les sédiments en aval du site de Hoque-Rabé, au niveau de la confluence de la Hoque du Rabé et du ruisseau des Cougnets.

Du point de vue environnemental, la campagne d'analyses de la zone aval réalisée sur le secteur du Pic de la Fourque a été basée :

- pour les sols, sur quelques 132 mesures par spectrométrie portable de fluorescence X (mesures pXRF) et 59 prélèvements de solides pour analyse de laboratoire distribués dans 11 secteurs le long du transect allant de l'ancienne mine de Salau au sud, au village de Seix au nord ;
- pour les sédiments fins, sur 11 prélèvements effectués dans le torrent des Cougnets et dans le Salat. Ces prélèvements ont été analysés en laboratoire pour les métaux et les éléments organiques principaux (HC, HAP, PCB).
- Pour les eaux, sur 18 prélèvements centrés sur la rivière le Salat et ses principaux affluents dont le torrent des Cougnets. Comme pour les sédiments, ces prélèvements ont été analysés en laboratoire pour les métaux et les éléments organiques principaux (HC, HAP, PCB).

Cette campagne a montré que les sites miniers considérés ne généraient pas d'impacts significatifs au niveau de la principale rivière du Salat drainant la zone d'étude.

Les principaux impacts en arsenic, tungstène et cuivre sont connus depuis plusieurs années et sont localisés à l'aval immédiat des verses à résidus de la mine de Salau, le long du torrent des Cougnets et de ses berges inondables. Ils s'estompent avant le village de Salau.

Sur l'essentiel de la partie aval, l'ensemble des points analysés au niveau des sols présentent des teneurs en métaux et métalloïdes qui se situent dans l'ordre de grandeur des gammes de valeurs des environnements témoins. Seuls quelques points présentent localement des teneurs plus élevées en un ou plusieurs des métaux suivants : plomb, zinc, arsenic, cuivre. Ces points sont ici considérés comme les témoins de contaminations des sols inondables en bordure de cours d'eaux, en relation avec les anciens épisodes de crues. Un léger marquage en zinc est également perceptible en amont du village de Salau après la confluence avec l'Hoque de Rabé et est attribué aux prospects amont de Saubé et Hoque-Rabé. Ce marquage est également observé sur l'ensemble des prélèvements de sédiments avals, probablement à mettre en relation avec les indices de Hoque Rabé et Saubé. Les teneurs mesurées restent faibles.

Les analyses de prélèvements d'eaux de surface effectués sur le torrent des Cougnets et surtout sur le Salat depuis le village de Salau jusqu'à Seix au nord, n'ont décelé aucune pollution significative.

L'absence d'impact significatif lié à l'ancien site d'extraction minière de Salau sur la partie aval du torrent des Cougnets et du Salat (à l'exception de l'aval proche des dépôts de résidus de traitement : dépôt du carreau 1230 et dépôt du Plat des Pommiers) a conduit GEODERIS à n'émettre aucune recommandation sur ce secteur aval. Même si la caractérisation des dépôts relatifs au site de Salau n'a pas été intégrée à cette étude, au vu de l'impact constaté en aval proche des dépôts de résidus de traitement, GEODERIS recommande toutefois un suivi et un entretien régulier des bassins situés en pied de dépôts afin d'éviter les départs de matériaux fins au sein du réseau hydrographique superficiel.

6 **REFERENCES**

Auger P. (2018). Campagne d'analyses de sol à l'aide du spectromètre de fluorescence X portable NITON® XL3t 800 sur le secteur minier du Pic-de-la-Fourque situé dans le département de l'Ariège – Etude de l'aval du site minier, rapport 2018-010-PA-LAB-EXP, pp 46, 1 ann.

Béziat P., Coulomb J.-J. (1990). Les gisements de tungstène en France. Situation en 1990. BRGM, 107 p.

Bodénan F. (2018). Caractérisation des dépôts de résidus de flottation de la mine d'Anglade, Salau (09). Rapport final. BRGWRP-67600-FR, p., ill., fig., tabl., ann., CD.

Boulmier J.L. (1984). Etude de l'empoussièrement fibreux à la mine de Salau (Ariège). 8 p.

Boulmier J.L. (1985). Mesures de la concentration en fibres dans l'air de la mine de Salau.

Calvet Y. (1966). Saubé (Ariège). Résultats des travaux de la campagne 1965. BRGM, DRMM.66.B2, 10 p. + plans, photographie, cartes et coupes en annexes.

Charuau D. (1974). Relations entre les concentrations plombo-zincifères et la tectonique superposée du district de Hoque-Rabé, Saubé, Carboire (Pyrénées ariégeoises). Thèse Univ. Paris 6, 134 p.

Deramond J. (1970). Tectoniques superposées sur le Paléozoïque du Haut Salat. Thèse Paris 6.

Direction Départementale de l'agriculture, Service Départemental de la Restauration des Terrains en Montagne (1985) - Etude de bassin – le torrent des Cougnets

Derré C. (Inconnu). Histoire du gisement de Salau et de son environnement. Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie, 301 p.

Derré C. (1978). Le gisement de scheelite de Salau dans son cadre géologique (Ariège, Pyrénées). Sciences de la Terre, 22, 5-68.

Derré C., Lafitte M., Maury R. (1983) – Etude des minéralisations sulfurées du gisement de Salau, Pyrénées (France) et de ses environs. Mineralium Deposita, 19, 176-182.

Fonteilles M., Soler P., Demange M., Derré C., Krier-Schellen A.-D., Verkaeren J., Guy B., Zahm A. (1989). The Scheelite Skarn Deposit of Salau (Ariege, French Pyrenees). Economic Geology, 84, 1172-1209.

Gerbal A., Ledru P. (1985). Les indices de minéralisations à l'est de la granodiorite de Salau : Inventaire et cadre tectonométamorphique. BRGM SGN/GEO, 85 GEO ET 57, 10 p. + carte.

GEODERIS (2013). Inventaire des dépôts issus des exploitations minières selon l'article 20 de la Directive 2006/21/CE, Monographie sur la région Midi-Pyrénées Volet « métallique », rapport N2012/038DE – 12NAT2121.

GEODERIS (2018). Phase informative de la Concession du Pic de la Fourque (Version Projet), rapport S2018 18MPY24030.

Girard, H., M. Schaeffner, M. et Dommanget A. (1999). Etat, après 20 ans, d'un géotextile utilisé pour la stabilisation d'un terril. Ingénieries. EAT, 1999, Géosynthétiques et applications.

Guérangé B., Lozes J. (1981). Skarns Pyrénées. Etude des déformations de la zone Ouest-Salau (Ariège). BRGM, 81-SGN-885-GEO, 20 p. + 2 cartes.

Guiraudie Ch., Prouhet J.P., Passaqui B., Lorang M. (1961). Campagne de prospection 1960 sur les calcaires du Caradoc de l'Ariège. BRGM, A1760, 22 p. + annexes.

Hulot C. (INERIS), Aubert N. (BRGM). (2011) - Mise en œuvre de la méthodologie IEM sur un ancien site minier en Ariège (concession du Pic de la Fourque), Salau (09). Rapport INERIS DRC-11-122615-13190A, BRGWRP-60674-FR, 113p.

INERIS (2007). Audit de la digue de résidus de traitement du gisement de Salau (09). Aspects stabilité d'ensemble et érosion régressive, rapport d'étude DRS-07-90076-11988A, 29 pp, 13 ann.

Jébrak M., Marcoux E. (2008). Géologie des ressources minérales. Société de l'Industrie Minérale. 667 p.

Kaelin J.L. (1982). Analyse structurale du gisement de scheelite de Salau (Ariège, France). Thèse Ecole des Mines de Paris, 176 p.

Laforêt C., Monchoux P., Oudin E., Tollon F. (1983). Inventaire minéralogique de la France n°11. Ariège. Ed. BRGM, 191 p.

Laperche V. (2018). Etude sanitaire et environnementale sur le secteur minier du Pic-de-la-Fourque (09), 2. Caractérisation du fond pédogéochimique. Rapport final. BRGWRP-67663-FR, 51 p., 22 ill. 5 ann., CD.

Leach D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J. and Walters, S. (2005). Sediment-hosted lead-zinc deposits : a global perspective. Economic Geology 100th Anniversary Volume, 561-607.

Ledru P. (1984). Evolution structural de l'encaissant de l'apex granodioritique du Pic-de-la-Fourque (Pyrénées Ariégeoises). Implications pour l'implantation d'un sondage. BRGM 84 SGN 296 GEO, 9 p. + figures.

Ledru P., Autran A. (1987). Relationship between fluid circulation, ore deposition, and shear zones : new evidence from the Salau scheelite deposit (French Pyrenees). Economic Geology, 82, 224-229.

Meinert L.D., Dipple G.M., Nicolescu S. (2005). World skarn deposits. Economic Geology, 100th anniversary volume, 299-336.

Melleton J. (2018). Contexte géologique et minéralisations naturelles en métaux et métalloïdes potentiellement contaminants sur le secteur minier du Pic-de-la-Fourque (Ariège). Rapport final. BRGWRP-68500 -FR.

Michard A.-G., Bouquet Ch. (1986) – Inventaire du territoire métropolitain. Recherches de tungstène dans la haute vallée du Salat (Ariège). Historique et bilan des travaux à fin 1985. Rapport BRGM, 86DAM008 OP4, 7 p. + annexes.

Padel M. (2016). Influence cadomienne dans les séries pré-sardes des Pyrénées Orientales : approche géochimique, stratigraphique et géochronologique. Thèse de doctorat, université de Lille 1, 190 p. + annexes.

Prouhet J.P., Guiraudie Ch., Passaqui B. (1965). Les minéralisations à Pb-Zn de Saubé et Hoque Rabé (Ariège). BRGM, DRMM.65.B8, 7 p. + plans et coupes en annexes.

Soler P. (1977). Pétrographie, thermochimie et métallogénie du gisement de scheelite de Salau (Pyrénées ariégeoises, France). Thèse Ecole des Mines de Paris, 220 p.

Soler P. (1980a). Géologie du gisement de Salau. In : Johan Z. ed. Minéralisations liées aux granitoïdes. Porphyres cuprifères dans leur contexte magmatique. Genèse des skarns à tungstène dans les Pyrénées. Mémoires du BRGM, 99, 204-215.

Soler P. (1980b). Etude pétrologique du gisement de Salau et de son enveloppe immédiate. In : Johan Z. ed. Minéralisations liées aux granitoïdes. Porphyres cuprifères dans leur contexte magmatique. Genèse des skarns à tungstène dans les Pyrénées. Mémoires du BRGM, 99, 217-229.

Sposito G. 1989. The chemistry of soils. New York, Oxford University Press, pp 277.

Ternet Y., Colchen M., Debroas E.J., Azambre B., Debon F., Bouchez J.L., Gleizes G., Leblanc D., Bakalowicz M., Jauzion G., Mangin A., Soulé J.C. (1997). Notice explicative, Carte géol. France (1/50 000), feuille AUlus-les-Bains (1086). Orléans, BRGM, 146 p.

Autres références non citées :

Derré C., Lafitte M., Maury R. (1984). Etude des minéralisations sulfurées du gisement de Salau, Pyrénées (France) et de ses environs. Mineralium Deposita, 19, 176-182.

Ledru P. (1986). Perspective d'extension du gisement de scheelite de Salau (Pyrénées ariégeoises) : données structurales. BRGM 86.SGN.043.GEO, 11 p.+ figures.

Ledru P., Gros Y. (1985). Dynamique de mise en place des plutons et minéralisations associées : exemple de l'apex granodioritique de Salau. BRGM, 85 SGN 183 GEO, 35 p + figures.

Zham A. (1987). Pétrologie, minéralogie et géochimie des cornéennes calciques et des skarns minéralisés dans le gisement de scheelite de Salau. Thèse Univ. Pierre et Marie Curie, 294 p. + annexes.

7 LISTE DES FIGURES

Figure 2 - Graphique des moyennes de précipitations mensuelles (RR) enregistrées à la station de Saint-Girons entre 1981 et 2010
station de Saint-Girons entre 1981 et 2010
Figure 3 - Situation orographique au droit de l'emprise de l'étude (source : Géoportail, © IGN)
IGN)
IGN)
Figure 4 - Reseau hydrographique principal sur l'emprise de l'etude, sur fond SCAN 100 ® IGN
Figure 5 - Contexte hydrographique de la mine de Salau et des travaux d'exploration de
Saubé (Source : GoogleEarth 2008)
Figure 6 - Localisation du Parc Naturel Régional des Pyrénées Ariégeoises (Google Maps 2011)
Figure 7 - (A) Localisation de la chaîne pyrénéenne et (B) ses grandes divisions structurales
(modifiée d'après Padel 2016) 21
Figure 8 - Schéma structural local simplifié
Figure 9 - Extrait de la carte géologique au 1/50 000 de Saint-Girops sur le secteur Moulin
Lours Oust
Eduga - Ousi
Figure 10 - Extrait de la carte geologique au 1/50 000 d'Autus sur les environs de Couliens25
et al., 1997)
Figure 12 - Succession lithostratigraphique synthétique du Dévonien Nord et des formations
susjacentes (extrait de Ternet et al., 1997)
Figure 13 - Patine rouille caractéristique des schistes noirs s_{1-3} (à gauche) et sa pyrite
finement disséminée (à droite) (photos BRGM)
Figure 14 - Extrait de la carte géologique au 1/50 000 d'Aulus sur le secteur Couflens - Pont
de la Taule
Figure 15 - Enveloppe du métamophisme de contact associé à la mise en place de la
aranodiorite du Pic de la Fourque (extrait de Derré 1983) 30
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet 1983) 30
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarps (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983) 30 Figure 17 - Exemple de relations entre les différents types de skarns (d'après Soler, 1980b)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)
Figure 16 - Hypothèse de la localisation d'apex cachés de granodiorite expliquant le métamorphisme de contact observé en surface (extrait de Michard & Bouquet, 1983)

Figure 29 - Répartition de Ni dans les sédiments de fond de vallon (données de l'Inventaire Figure 34 - Carte de localisation des limites des permis successifs d'Anglade et de la concession du Pic de la Fourque......56 Figure 36 - Coupe Nord-Sud schématique de l'infrastructure du gisement après mise en Figure 37 - Schéma de fonctionnement des opérations unitaires de traitement du minerai de Figure 38 - Carte localisant la position topographique des verses de la mine de Salau à Figure 39 - Photo de la verse à stériles du niveau 1320 montrant le ravinement en cours et la Figure 40 - Schéma de principe de construction d'une dique de retenue des produits Figure 41 - Verse à résidus 1230 (dépôt 09_0019_A_T1)en plan et en vue de côté depuis l'ouest (à noter la partie recouverte par des stériles rocheux plus propice à la revégétalisation Figure 42 - Verse à résidus 1150 du Plat des Pommiers (dépôt 09_0019_A_T7) en plan et Figure 43 - Photos montrant les aspects des résidus et les différents faciès proches de la Figure 44 - Analyse par fluorescence X portable des deux verses à résidus a) in-situ et sur Figure 45 - Profils des teneurs en W, As, Cu, Fe (XRF sur sec) de trois tarières réalisées sur Figure 47 - Principales coupures lithostratigraphiques issues de l'étude géologique du Figure 48 - Position de tous les échantillons de sols et de roches analysés dans la zone Figure 56 - Localisation des prélèvements de sols et résidus, secteurs de Saubé et Hoque-Figure 58 - Localisation des prélèvements d'eaux et de sédiments, secteurs de Saubé et Figure 61 - Teneurs en plomb mesurées dans les sols des secteurs de Saubé et Hoque-Figure 62 - Teneurs en zinc mesurées dans les sols des secteurs de Saubé et Hogue-Rabé Figure 63 - Teneurs en cadmium mesurées dans les sols des secteurs de Saubé et Hogue-

8 LISTE DES TABLEAUX

Tableau 1 - Scores de risques attribués aux dépôts du secteur du Pic de la Fourque 10 Tableau 2 - Moyennes (arithmétiques) du cumul des précipitations mensuelles (RR) entre Tableau 3 - Crues torrentielles, de forte intensité, référencées dans le rapport du RTM 17 Tableau 5 - Concentrations moyennes (en ppm) de quelques éléments en trace pour des Tableau 6 - Eléments analysés et leurs seuils de détection pour la méthode DCP (les seuils Tableau 7 - Principaux faits et dates qui ont marqué l'historique de la concession du Pic de la Tableau 8 - Phases minérales détectées par DRX sur poudre et chimie correspondante 71 Tableau 9 - Résultats de l'analyse des éluats sur deux échantillons (faciès noir et rouge). Tableau 10 - Principaux résultats analytiques de l'eau de mine de l'émergence du carreau Tableau 11 - Statistiques simples pour les teneurs en plomb exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, Tableau 12 - Statistiques simples pour les teneurs en zinc exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, Tableau 13 - Statistiques simples pour les teneurs en arsenic exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, Tableau 14 - Statistiques simples pour les teneurs en cuivre exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en cuivre pour chaque formation géologique. La LQ du cuivre est de 15 mg/kg dans le meilleur des cas (temps de mesure de 60 secondes sur des échantillons broyés < 100 μm)......87 Tableau 15 - Statistiques simples pour les teneurs en nickel exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, Tableau 16 - Statistiques simples pour les teneurs en vanadium exprimées en mg/kg : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, minimum et maximum des teneurs en vanadium pour chaque formation géologique Tableau 17 - Statistiques simples pour les teneurs en fer exprimées en % : nombre de mesures (N), nombre de mesures > LQ (Nb), moyennes, écart-type (E.T.), médiane, Tableau 18 - Résultats des analyses effectuées sur les sols et résidus des secteurs de Tableau 19 - Résultats des analyses effectuées sur les végétaux du secteur de Saubé 103 Tableau 20 - Distribution des mesures pXRF dans les 11 secteurs de la zone d'étude 106

9 LISTE DES ANNEXES

Annexe 1	Scans des principaux documents récupérés au niveau des archives départementales et de la DREAL
Annexe 2	Composition minéralogique des minéralisations rencontrées dans le secteur d'étude et du Pic de la Fourque
Annexe 3	Cartes de localisation des prélèvements de sols et synthèse des teneurs en arsenic, cuivre et tungstène
Annexe 4	Résultats analytiques des prélèvements de sol
Annexe 5	Cartes de localisation des prélèvements de sédiments et d'eaux de surface, et synthèse des teneurs en arsenic et tungstène
Annexe 6	Résultats analytiques des prélèvements d'eau de surface
Annexe 7	Résultats analytiques des prélèvements de sédiments (SED01 à SED12)

<u>Annexe 1</u>

Scans des principaux documents récupérés au niveau des archives départementales et de la DREAL Hors texte (DVD joint)

<u>Annexe 2</u>

Composition minéralogique des minéralisations rencontrées dans la zone d'étude et du secteur du Pic de la Fourque

Tableau 1 – Minéralisations à scheelite du gisement de Salau (d'après Laforêt *et al.*, 1983)

Minéral	Formule chimique	Fréquence	Description de l'occurrence
Argent natif	Ag	Trace	En petites plages globulaires associées au bismuth natif, dans la chalcopyrite ou indépendant de cette dernière.
Argentopyrite	AgFe ₂ S ₃	Trace	Dans la galène.
Arsénopyrite	FeAsS	Fréquent	En cristaux souvent cataclasés dans les carbonates ou dans la pyrrhotite qui la remplace. À noter la présence en trace de danaïte, variété cobaltifère.
Bismuth natif	Bi	Rare	En plages indépendantes et parfois automorphes dans la pyrrhotite ou les carbonates ; en petites inclusions dans l'arsénopyrite, la chalcopyrite et rarement la cobaltite. Associé à l'or natif, argent natif, tétradymite et à de petits grains de galène dans les fissures de l'arsénopyrite et de la pyrrhotite ; aussi en veinule dans la scheelite avec un peu de chalcopyrite.
Bismuthinite	Bi ₂ S ₃	Rare	Finement exprimée dans l'arsénopyrite où elle est parfois liée au bismuth natif, en fines inclusions dans la scheelite, en individus aciculaires dans le quartz
Brunogéiérite	Fe ₂ ⁺² Ge ⁴⁺ O ₄	Trace	En inclusion dans la sphalérite massive.
Carboirite	FeAl ₂ (GeO ₄)O(OH) ₂	Trace	En grains dispersés dans la sphalérite.
Cérusite	PbCO ₃	Trace	En altération de la galène.
Chalcopyrite	CuFeS₂	Fréquent	En plages xénomorphes liées très étroitement à la pyrrhotite; en remplissage de fissure, seule ou avec du bismuth natif; hôte de la sphalérite, mackinawite, pyrrhotite, bismuth, argent natif et galène.
Cobaltite	CoAsS	Rare	En cristaux automorphes indépendants ou associés et inclus dans l'arsénopyrite.
Cosalite	$Pb_2Bi_2S_5$	Trace	Dans les fissures de l'arsénopyrite avec de la galène.

Minéral	Formule chimique	Fréquence	Description de l'occurrence
Cubanite	CuFe ₂ S ₃	Trace	En lamelle dans la chalcopyrite.
Galène	PbS	Fréquent	En petites plages dans la pyrrhotite ou indépendante dans la gangue carbonatée, souvent associée au bismuth natif et à la sphalérite, très finement exprimée dans la chalcopyrite.
Gersdorffite	NiAsS	Trace	Automorphe dans la sphalérite.
Graphite	С	Rare	En fines paillettes dans les carbonates ou associés aux sulfures et à la scheelite, généralement en sorte de chapelets sinueux.
Hessite	Ag₂Te	Trace	Associée à la galène ou à la chalcopyrite, ou très finement incluse dans la pyrrhotite.
Illménite	Fe ²⁺ TiO₃	Trace	Résiduelle dans le sphène ou indépendante à formes arrondies. La présence de leucoxène (ilménite altérée) est rare, en chapelets dans le quartz.
Kobellite	Pb ₂₂ Cu ₄ (Bi,Sb) ₃₀ S ₆₉	Trace	En inclusions dans l'arsénopyrite ou associée au bismuth natif.
Lépidocrocite	γ-Fe ³⁺ O(OH)	Rare	Finement radiée dans la limonite.
Limonite	(Fe,O,OH,H ₂ O)	Rare	En altération de la pyrrhotite.
Mackinawite	(Fe,Ni) ₉ S ₈	Trace	En exsolutions et dépôts orientés dans la chalcopyrite.
Magnétite	Fe ²⁺ Fe ³⁺ 2O ₄	Trace	Associée à la pyrite provenant de la pyrrhotite.
Marcassite	FeS₂	Trace	Intimement associée à la pyrite à tendance automorphe dans les fissures.
Molybdénite	MoS ₂	Trace	Lamellaire et indépendante ou dans la pyrrhotite associée à la chalcopyrite.
Or natif	Au	Trace	Associé au bismuth.
Pyrite	FeS ₂	Fréquent	Indépendante dans les carbonates et le quartz ou provient de la transformation de la pyrrhotite avec structure en œil d'oiseaux.

Minéral	Formule chimique	Fréquence	Description de l'occurrence
Pyrrhotite	Fe ₇ S ₈	Abondante	Massive constituée de cristaux xénomorphes, souvent nettement déformés, structure polycristalline plus ou moins équigranulaire, peut être l'hôte de tous les autres minéraux y compris la scheelite qu'elle corrode parfois.
Rutile	TiO ₂	Rare	Associé à la pyrrhotite et à l'ilménite.
Scheelite	Ca(WO₄)	Fréquente	En cristaux arrondis dans la pyrrhotite, automorphes dans le quartz.
Scorodite	Fe ³⁺ AsO ₄ ,2H ₂ O	Trace	En altération de l'arsénopyrite.
Sphalérite	(Zn,Fe)S	Fréquent	En plages xénomorphes isolées dans la pyrrhotite ou associées à de la chalcopyrite et plus rarement à de la stannite. En petits grains parfois étoilés dans la chalcopyrite, en plages isolées dans la gangue ou en remplissage de fissures avec un peu de galène. Très localement massive dominant sur la pyrrhotite.
Sphène	CaTi(SiO₄)O	Rare	En remplacement de l'ilménite, ou à tendance automorphe et indépendant.
Stannite	Cu₂FeSnS₄	Trace	Associée à la sphalérite ou dans la pyrrhotite, compose des associations avec sphalérite-chalcopyrite-pyrrhotite.
Tétradymite	Bi ₂ Te ₂ S	Trace	Associée au bismuth et à la galène, ou en inclusions dans la chalcopyrite ou la pyrrhotite.
Zircon	Zr(SiO ₄)	Rare	En cristaux indépendants.

Minéral	Formule chimique	Fréquence	Description de l'occurrence
Argentopentlandite	Ag(Fe,Ni) ₈ S ₈	Trace	En inclusions cubiques dans la chalcopyrite.
Argutite	GeO ₂	Trace	En petites lamelles dans la sphalérite.
Boulangérite	Pb ₅ Sb ₄ S ₁₁	Trace	En fibres isolées dans la galène.
Brunogéiérite	Fe ₂ ⁺² Ge ⁴⁺ O ₄	Rare	En petits grains dans la sphalérite massive.
Carboirite	FeAl ₂ (GeO ₄)O(OH) ₂	Trace	En lamelles incluses dans la sphalérite, plus rarement dans le quartz.
Cassitérite	SnO ₂	Trace	En petits grains dans la sphalérite.
Cérusite	PbCO ₃	Fréquente	En altération de la galène.
Chalcopyrite	CuFeS ₂	Rare	En petites plages xénomorphes dans la sphalérite.
Cobaltite	CoAsS	Trace	En rares plages inclues dans la sphalérite.
Covellite	CuS	Trace	En altération de la chalcopyrite.
Galène	PbS	Fréquent	En veinules sécantes ou en petites inclusions arrondies dans la sphalérite.
Gersdorffite	NiAsS	Rare	En fins cristaux dans la sphalérite ou incluse dans l'ullmannite.
Graphite	С	Trace	En petits agglomérats cryptocristallins dans la sphalérite.
Mackinawite	(Fe,Ni) ₉ S ₈	Trace	En exsolutions dans la chalcopyrite.
Ménéghinite	Pb ₁₃ CuSb ₇ S ₂₄	Rare	En cristaux automorphes dans la gangue carbonatée, plus rarement dans la sphalérite.
Pentlandite	$(Fe_xNi_y)_{\Sigma9}S_8$ (x+y=9)	Trace	Associée à la smythite et à la pyrrhotite dans la sphalérite.

Tableau 2 – Composition minéralogique de l'indice de Saubé(d'après Laforêt *et al.*, 1983)

Minéral	Formule chimique	Fréquence	Description de l'occurrence
Pyrite	FeS₂	Fréquent	Cristaux automorphes inclus dans la sphalérite qui les remplace, également dans la gangue carbonatée et quartzeuses.
Pyrrhotite	Fe ₇ S ₈	Rare	En inclusions dans la sphalérite.
Rutile	TiO ₂	Trace	Rares inclusions dans la sphalérite.
Smithsonite	ZnCO ₃	Fréquent	En encroûtements et en veinules dans la sphalérite.
Smythite	(Fe,Ni) _{3+x} S ₄ (x=0-0.3)	Trace	Associée à la pentlandite.
Sphalérite	(Zn,Fe)S	Abondante	Massive, en rubans discontinus, de couleur ambrée, très mielleuse dans les fissures.
Stannite	Cu₂FeSnS₄	Trace	En grains xénomorphes dans la sphalérite.
Ullmannite	NiSbS	Trace	En petites plages dans la galène.

<u>Annexe 3</u>

Cartes de localisation des prélèvements de sols et synthèse des teneurs en arsenic, cuivre et tungstène

<u>Annexe 4</u>

Résultats analytiques des prélèvements de sol

	Référence EUROFINS :	17E052650-018	17E052650-019	17E052650-020	17E052650-021	17E052650-022	17E052650-023	17E052650-024	17E052650-025	17E052650-026	17E052650-027	17E053342-019	17E053342-020	17E053342-021	17E053342-022	17E053342-023	17E053897-021	17E053897-022	17E053897-023	17E053897-024
	N° GEOD	P001	P003	P005	P006	P008	P009	P011	P012	P014	P015	P018	P020	P022	P023	P025	P035	P036	P037	P038
	Référence Client :	PIF-17-SOL-01-0-10	PIF-17-SOL-02-0-5	PIF-17-SOL-03-0-5	PIF-17-SOL-04-0-5	PIF-17-SOL-05-0-7	PIF-17-SOL-06-0-5	PIF-17-SOL-07-0-10	PIF-17-SOL-08-0-10	PIF-17-SOL-09-0-5	PIF-17-SOL-10-4-10	PIF-17-SOL-11-0-10	PIF-17-SOL-12-0-15	PIF-17-SOL-13-0-5	PIF-17-SOL-14-0-15	PIF-17-SOL-15-0-7	PIF-17-SOL-16-0-10	PIF-17-SOL-17-0-5	PIF-17-SOL-18-0-3	PIF-17-SOL-19-0-3
Paramètres	Unités Incertitude	LQ																		
Matière sèche	% P.B. 5%	0,1 65,8	66,4	52,5	67,1	79,6	59,7	91,5	60,2	94,9	92,5	68,9	57,3	95,7	66,5	61,2	69,5	65,2	88	86,7
Refus pondéral à 2 mm	% P.B.	1 <1.00	1,38	12,5	44,3	<1.00	1,89	2	<1.00	1,75	3,16	12,2	23,4	5,06	17,7	1,46	33,8	32,2	29,4	3,25
Préparation physico-chimique (séchage à 40°C)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Granulo - Tranche 0.02µm à 2µm	%										3,73									
Granulo - Tranche 2µm à 20µm	%										30,87									
Granulo - Tranche 20µm à 63µm	%										9,67									
Granulo - Tranche 63µm à 200µm	%										11,68									
Granulo - Tranche 200µm à 2000µm	%										5,15									
pH extrait à l'eau		5,5	4,9	5,1	5	6,9	5,2	8,4	5	8	8,6	5,2	5,6	8,9	5,6	5,2	5,6	5,3	8,3	7,9
Température de mesure du pH	°C	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	21	22
Carbone Organique Total par Combustion	mg/kg MS 40%	1000 52500	106000	129000	72700	16100	98200	3450	105000	15000	3660	38900	97000	4250	123000	132000	121000	132000	57500	69800
Minéralisation Eau Régale - Bloc chauffant après p		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (Al)	mg/kg MS 23%	5 7920	17300	11800	11700	18000	13500	10900	18400	20600	26300	12800	17300	19700	17300	18300	8480	15700	15700	15100
Antimoine (Sb)	mg/kg MS 35%	1 2,74	6,96	4,29	10,8	95	9,19	25,9	7,19	120	5,54	5,01	4,58	11,7	5,76	10,7	<1.01	3,03	5,32	2,8
Argent (Ag)	mg/kg MS	5 <5.00	<5.00	<5.00	<5.00	24,4	<5.00	7,35	<5.04	<5.00	<5.00	<5.00	<5.08	<5.00	<5.00	<5.02	<5.04	<6.05	<5.38	<5.13
Arsenic (As)	mg/kg MS 40%	1 13,6	26,4	18,4	25,3	67,5	27,8	40	28,3	100	9,66	21,2	19	74,1	18,2	25,4	12,9	40,8	58,2	52
Baryum (Ba)	mg/kg MS 35%	1 44,1	25,9	174	23,8	12,5	29,6	11,8	31,4	20,2	17,3	40,9	37,8	21,4	40,6	101	21,2	18,7	29,1	34,7
Cadmium (Cd)	mg/kg MS 40%	0,4 <0.40	<0.40	<0.40	1,02	89	1,2	45,8	0,6	53,9	0,51	0,57	0,48	0,81	0,77	<0.40	<0.40	<0.48	<0.43	2,26
Calcium	mg/kg MS	50 993	636	998	698	1780	1150	92000	1260	48800	6160	904	1910	64200	3220	1320	2960	1150	32000	21100
Chrome (Cr)	mg/kg MS 35%	5 8,29	24,2	16	15,1	20,1	16,2	11,7	23,5	27,7	33,4	15,2	31,9	24,3	22,8	24	11,1	22	19,4	18
Cobalt (Co)	mg/kg MS	1 9,38	15,2	8,16	12,9	13,8	12,6	30,4	16,4	56,2	18,3	11,8	22,7	58,4	10,2	13,5	<1.01	7,62	55,2	30,7
Cuivre (Cu)	mg/kg MS 45%	5 8,93	14,5	11,6	15,8	190	19,6	68,2	19,1	88,3	30,9	12,1	25,5	56,6	14,8	20,1	8,06	21,3	75,7	39,9
Etain (Sn)	mg/kg MS 30%	5 <5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.04	<5.00	<5.00	<5.00	<5.08	<5.00	<5.00	<5.02	<5.04	<6.05	<5.38	<5.13
Fer (Fe)	mg/kg MS 25%	5 36200	46900	31000	45200	180000	50400	58700	38000	75900	44200	33800	38900	48900	33700	44500	17600	48100	45200	37400
Magnésium (Mg)	mg/kg MS	5 1600	4130	2140	2080	7000	2460	7010	4510	15800	10700	4180	4870	9310	2740	3660	1850	1740	9890	7260
Manganèse (Mn)	mg/kg MS 30%	1 584	722	99,4	849	8760	645	1990	493	2370	251	407	589	657	302	825	133	143	708	626
Molybdène (Mo)	mg/kg MS 40%	1 <1.00	<1.00	<1.00	<1.00	7,29	<1.00	<1.00	<1.01	9,89	<1.00	<1.00	<1.02	<1.00	<1.00	<1.00	<1.01	<1.21	<1.08	<1.03
Nickel (Ni)	mg/kg MS 40%	1 13,3	20,2	11,8	18,9	75,4	22,3	46,4	25,1	89,1	47,7	25,4	30,3	61,3	15,8	19,1	9,93	16	72,6	35,6
Plomb (Pb)	mg/kg MS 35%	5 29,1	97,5	57,3	1190	16300	667	6730	103	2820	63,1	40,8	73,2	177	114	158	30,9	73,4	69	70,9
Potassium	mg/kg MS	20 531	817	705	559	421	740	608	652	597	612	526	612	700	809	953	410	623	536	479
Silicium	mg/kg MS	10 48,4	303	276	262	2680	415	2110	335	536	1200	473	299	399	335	361	205	423	2010	1790
Sodium (Na)	mg/kg MS	20 44,8	97,1	94,2	54,6	20,6	53,8	31,9	78,5	65,2	88,9	59,3	83,7	105	117	94,4	52,9	70,3	95,2	37,6
Titane (Ti)	mg/kg MS 25%	5 8,37	28,8	23,2	21,8	28	28,6	17,9	26,2	19,6	5,53	12,5	29,7	9,86	26,5	35,1	18,7	39,9	17,2	27,1
Tungstène	mg/kg MS	10 <10.0	<10.0	<10.0	<10.0	12,8	<10.0	<10.0	<10.1	<10.0	<10.0	<10.0	<10.2	<10.0	<10.0	<10.0	<10.1	<12.1	<10.8	18,3
Vanadium (V)	mg/kg MS 15%	1 12,5	37	33	22,9	64,6	24,5	13,5	29,6	39,7	28,5	16,9	30,9	22,5	32,8	38	20,6	46,9	18	16,9
Zinc (Zn)	mg/kg MS 50%	5 102	96,5	66,5	640	34500	580	26100	221	22600	229	128	435	307	158	280	53,7	65,9	171	494
Indice Hydrocarbures (C10-C40)	mg/kg MS 49%	15									33,1									
HCT (nC10 - nC16) (Calcul)	mg/kg MS										19,8									
HCT (>nC16 - nC22) (Calcul)	mg/kg MS										4,68									
HCT (>nC22 - nC30) (Calcul)	mg/kg MS										3,05									
HCT (>nC30 - nC40) (Calcul)	mg/kg MS										5,56									
Naphtalène	mg/kg MS 32%	0,05									<0.05									
Acénaphthylène	mg/kg MS 30%	0,05									<0.05									
Acénaphtène	mg/kg MS 25%	0,05									<0.05									
Fluorène	mg/kg MS 32%	0,05									<0.05									
Phénanthrène	mg/kg MS 31%	0,05									<0.05									
Anthracène	mg/kg MS 28%	0,05									<0.05									
Fluoranthène	mg/kg MS 34%	0,05									<0.05									
Pyrène	mg/kg MS 34%	0,05									<0.05									
Benzo-(a)-anthracène	mg/kg MS 29%	0,05									<0.05									
Chrysène	mg/kg MS 33%	0,05									<0.05									
Benzo(b)fluoranthène	mg/kg MS 36%	0,05									<0.05									
Benzo(k)fluoranthène	mg/kg MS 41%	0,05									<0.05		_							
Benzo(a)pyrène	mg/kg MS 37%	0,05									<0.05									
Dibenzo(a,h)anthracène	mg/kg MS 43%	0,05									<0.05									
Benzo(ghi)Pérylène	mg/kg MS 43%	0,05									<0.05									
Indeno (1,2,3-cd) Pyrène	mg/kg MS 43%	0,05									<0.05									
Somme des HAP	mg/kg MS						1	l			<0.05									
PCB 28	mg/kg MS 32%	0,01		-		_	1	l			<0.01				-					
PCB 52	mg/kg MS 30%	0,01									<0.01				-					
PCB 101	mg/kg MS 39%	0,01					1	1			<0.01	1				_				
PCB 118	mg/kg MS 37%	0,01					-	1			<0.01	1				_				
PCB 138	mg/kg MS 37%	0,01									<0.01									
РСВ 153	mg/kg MS 32%	0,01				_	1	l			<0.01				-					
PCB 180	mg/kg MS 34%	0,01		_		_	1	l			<0.01				-					
SOMME PCB (7)	mg/kg MS									l	<0.01									

	Référence EUROFINS :		1	L7E056540-003	540-003 17E056540-004		17E056540-005 17E056540-006 17E056540-007		17E056540-008 17E056540-009		009	17E056540-010 17E056540	0-011	17E056540-012 17E056540-013 17E056540-014 17E056540-015			15 17E0565	17E056540-016 17E056540-017 17E056540-018				17E056540-019 17E0	17E056540-021				
	N° GEOD			P041	P04	2	P043	PO	44 PC	045	P046	P047	7	P048 P0	49	P050	P051	PC	052 P053	PO	54	P055	P056		P057	P058	P059
	Référence C	lient :	F	PIF-17-SOL-20-1-	6 PIF-17-SOL	-21-1-6	PIF-17-SOL-22-	0-10 PIF-17-SC	L-23-0-5 PIF-17-SC	DL-24-0-10	PIF-17-SOL-25-0-10	0 PIF-17-SOL-2	26-0-10	PIF-17-SOL-27-0-10 PIF-17-SOL	-28-20-40	PIF-17-SOL-29-0	-10 PIF-17-SOL-3	0-0-10 PIF-17-SOL	31-0-6-3-10 PIF-17-SOL-3	2-15-25 PIF-17-SC	DL-33-0-6	PIF-17-SOL-34-0-1	0 PIF-17-SOL-3	5A-0-5 I	PIF-17-SOL-35B-0-8 PIF-1	17-SOL-36-0-15	PIF-17-SOL-37-2-10
Paramètres	Unités	Incertitude	LQ																								
Matière sèche	% P.B.	5%	0,1	80,	8	77,3		77,2	72,6	72	86,	.3	72,5	75	76,5		50,1	66	91,3	80,6	85,9	81	,3	77,1	77,8	82,2	70
Refus ponderal à 2 mm	% P.B.		1 <	<1.00	<1.00			13,9	2,54 <1.00		26,	.1	1,67	10,1	8,86		L,15	1,04	2,51 <1.00		2,37	13	,3	1,42	<1.00 <1.0	<u>0</u>	15,6
Préparation physico-chimique (séchage à 40°C)			-		-	6.20	-	-	-		-	-				-	-	-	-	-		-	-				-
Granulo - Tranche 0.02µm à 2µm	%			5,3	2	6,29		4,92	5,7					6,05	7,64		2,75						_		2,06		
Granulo - Tranche 2µm a 20µm	%			30,2	1	29,01	2	29,62	33,12					29,69	43,64	1	9,36						-		15,47		
Granulo - Tranche 20µm a 63µm	%			34,3	1	31,63		31,9	30,46					30,48	25,11	24	1,/5						-		22,59		
Granulo - Tranche 63µm a 200µm	%			20,	4	26,08	2	23,43	13,19					18,03	10,86	3.	2,11						-		19,72		
Granulo - Tranche 200µm a 2000µm	%			9,7	6	6,99	1	10,13	17,53					15,75	12,75	2	0,37						_		40,16		
Cyanures totaux	_					2.6			2.0	5.0	-		-						7.0		7.0			7.0			6.0
pH extrait a l'eau				3,	4	3,6		4,6	3,9	5,2	5,	.9	/	4	6		4,1	9,2	7,8	7,4	7,2	6	,4	7,2	5,3	8,1	6,8
Centeres Oregines Tetelane Combustien		400/	1000	2	2	22		22	20	22	2	2	20	20	20		22	20	22	22	22	40000	22	22	22	21	. 22
Carbone Organique Total par combustion	Ting/ kg IVIS	40%	1000	150	0	3780		1600	4340	29900	1130	iu	55200	1980	2040	44	100	62800	23200	5830	74700	10800		106000	52700	26500	85900
Coefficient de Variation (CV)	-																						_				
Nineralisation Eau Regale - Bloc chaunant apres	P	220/	-		-	2100	-	-	-	27600	-	-	20000		12000	-	-	-	-	-	12400	-	-	7000		12000	- 10100
Aluminium (Al)	mg/kg IVIS	23%	5	3//	0	2190		2280	4070	27600	612	.0	20600	5160	12600	/	750	14000	13000	/230	12400	1150	00	7690	/830	12800	18100
Antimolne (SD)	mg/kg IVIS	35%	1	4,4	8	8,62	5.00	7,73	5,04 <1.00		ь,	,1	3,47	5,63	8,24		(,26	3,54	2,21	4,25	2,77	3,0	J6	2,01	4,55	3,74	<1.02
Argent (Ag)	mg/kg IVIS	400/	5 <	\$.00	<5.00		<5.00	<5.00	<5.02	00.5	<5.00	<5.03		<5.00 <5.00	4070	<5.00	<5.00	<5.00	<5.00	<5.00	222	<5.00	<5.11	200	<5.00 <5.0	<u>J</u>	<5.09
Arsenic (As)	mg/kg MS	40%	1	23	1	494		39,3	333	99,5	45	0	60,2	830	1370	1	010	495	24.2	513	332	42	7	260	498	213	90,5
Baryum (Ba)	mg/kg IVIS	35%	1	16,	6	14,2		26,9	18,1	/6,2	14,	8	55,1	22,7	37,7	-	23,9	37,6	24,3	19,1	32,7	38	,/	28	17,6	23	/1,4
Cadmium (Cd)	mg/kg IVIS	40%	0,4	0,8	0	1,39	<0.40	<0.40	2200	0,57	<0.40		0,95	0,77	20,3		7,94	1,9	1,58	0,99	1,12	1	,5	0,61	0,75	1,21	<0.41
	mg/kg IVIS	250/	50	229	0	2100	5.00	3120	2380	2100	330	0	10500	6670	37600	2	/20	8250	40200	3190	10800	1340	0	16200	3460	24200	/500
	mg/kg IVIS	35%	5	9,	1	6,55	<5.00	7.42	7,79	23,7	8,4	6	21,1	9,28	11		13	15,5	11,9	10,4	14,/	13	,5	9,13	9,76	14,4	18,4
Cobait (Co)	mg/kg IVIS	450/	1	10,	4	27		7,43	19,2	23,9	21,	6	27,7	1/,/	81,3		15,8	36,4	23	6,42	24,1	22	,3	16,/	9,81	28	21,9
Cuivre (Cu)	mg/kg IVIS	45%	5	23	6	861	-5.00	45	293	38,8	15.00	-5.02	85,8	628 5.25 ×5.00	3630	-5.00	892	/21	286	880	345	-5.00	52	321	559	293	51,5
	ing/kg ivis	30%	5	5,2	0 < 5.00	15 2000	5.00	<5.00	<5.02	52700	<5.00	<5.03	52400	5,25 <5.00	102000	<5.00	<5.00	<5.00	<5.00	<5.00	52200	<5.00	<5.11	42700	<5.00 <5.0	J	<5.09
Fer (Fe)	mg/kg IVIS	25%	5	9430	0	152000	5	2500	170000	52700	15900	0	53400	151000	183000	144	000	70700	42700	90000	52300	5190	00	43700	103000	45700	41/00
Magnesium (Mg)	mg/kg IVIS	2007	5	1/0	0	/15		693	1/60	/4/0	358	0	10500	2490	3640	3	340	6350	1/300	3950	6320	620	00	5820	4190	12200	6610
Malubdana (Ma)	mg/kg IVIS	30%	1	28	6	138		82,2	193	1590	26	3 -1 01	1470	192	1650		422	1290	/95	330	/68	/3	11.02	468	309	643	947
Nickel (Ni)	mg/kg IVIS	40%	1	2,9	9	5,15	-1.00	5,1	5 <1.00	20.7	2,9	2 <1.01	41.5	2,44	1,5		1,72 <1.00	<1.00	26.4	1,45 <1.00	25.4	<1.00	<1.02	10.4	1,91 <1.0	<u>J</u>	<1.02
Nickei (Ni)	ing/kg ivis	40%	1	3,0	4	2,69	<1.00	20.0	2,51	28,7	7,8	7	41,5	3,50	53,3		5,5	30,4	26,1	0,05	25,4		,5	18,4	11,6	30,8	35,/
Plomb (Pb)	mg/kg MS	35%	5	11	4	100		20,9	44,5	54,2	48,	./	49,9	60,7	57,9		08,6	53,7	45,5	50,4	53,1	8	38	34,6	52,6	68,3	39,8
Potassium	mg/kg IVIS		20	81	/	1210		2510	1610	200	96	2	579	1100	1180		898	818	533	/4/	748	68	34	465	4//	436	5/4
Silicium Codium (No)	mg/kg MS		20	59	0	4/1		463	4//	390	119	2	8/9	1020	823	1	20	857	700	1350	920	65	7	27.5	/82	1200	0/2
Sodium (Na)	mg/kg MS	25.0/	20	31,	9	56,1		79,9	49,5	58,0	32,	2	93,7	44,4	40,8		38	/8,4	129	37,4	52,2	52	,/	37,5	24	95,8	37,5
Tungstàna	mg/kg MS	2370	10	43	0	0020		302	732 E130	30,5	30	12	244	5240	6090	-	040	2120	701	200	1120	123	,9	1060	2000	2420	70,2
Venedium (V)	mg/kg M3	150/	10	343	2	9030		2050	17.4	230	410	1	225	16.4	15 7	3	040	16.2	14	12.920	1150	123	0	11.4	5090	2420	10.1
Zine (Zn)	mg/kg MS	15%	-	7,4	7	7,8		0,71	17,4	33,3	16,	-1	120	10,4	15,7		122	10,5	14	12,0	15,4	15	,0	11,4	13	15,2	19,1
	mg/kg MS	20%	0.1	92,	/	80		10,1	90	100	80,	./	120	126	800		132	245	222	128	209	31		188	124		1/2
Indico Hydrocarburos (C10, C40)	mg/kg MS	20%	15	15	c	151		247	AG 6			-		20.2	25.6		171						-		102		
HCT (pC10, pC16) (Calcul)	mg/kg MS	4570	15	13,	0	1 96		24,7	40,0					20,5	55,0		1/1						-		102 5.67		
HCT (hC10 - hC10) (calcul)	mg/kg MS			1,0	9 c	1,00		0,4	1,10			-		1,45	0,01		17.1						-		5,07		
HCT (>hC10 - hC22) (Calcul)	mg/kg MS			2,7	2	0,30		11	1,04			-		0,00	4,5		0.6						-		3,92		
HCT (>hC22 - hC30) (Calcul)	mg/kg MS			0,1	2	00,0		11.2	10,2					0.70	19,0		0,0						-		54,7		
Nonhtalàna	mg/kg MS	27%	0.05	5,5 2,5	9 -0.05	/2	<0.0F	11,3	25,4		-			9,70	10,9	<0.0E	57,Z						-		<0.05		
Acénanthhulàna	mg/kg MS	32%	0,05 <	0.05	<0.05		<0.05	<0.05				-		<0.05 <0.05		<0.05							-		<0.05		
Acénaphtàpa	mg/kg MS	25%	0,05	0.05	<0.05		<0.05	<0.05						<0.05 <0.05		<0.052							-		<0.05		
Eluoràna	mg/kg MS	23/6	0,05	0.05	<0.05		<0.05	<0.05						<0.05 <0.05		<0.06							-		<0.05		
Phánanthràng	mg/kg MS	32/0	0,05	0.05	<0.05		<0.05	<0.05						<0.05		<0.052							-		<0.05		
Anthracène	mg/kg MS	28%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.001									<0.05		
Eluoranthàne	mg/kg MS	20%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.053									<0.05		
Dyràna	mg/kg MS	3/1%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.052							-		<0.05		
Benzo-(a)-anthracène	mg/kg MS	29%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.052							-		<0.05		
Chrysène	mg/kg MS	33%	0.05	0.051	<0.05		<0.05	<0.05						<0.05 <0.05		<0.033							-		<0.05		
Benzo(h)fluoranthène	mg/kg MS	35%	0,05	0.051	<0.05		<0.054	<0.05						<0.05 <0.05		<0.07									<0.05		
Benzo(k)fluoranthàna	mg/kg MS	3076 //10/	0,05	0.05	<0.05		<0.05	<0.05						<0.05 <0.05		<0.062							-		<0.05		
Benzo(a)nuclantinene	mg/kg MS	41/0	0,05	0.05	<0.05		<0.05	<0.05						<0.05 <0.05		<0.005							-		<0.05		
Dihenzo(a h)anthracène	mg/kg MS	/13%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.055							-		<0.05		
Benzo(ghi)Pérulène	mg/kg MS	43%	0.05	0.05	<0.05		<0.05	<0.05						<0.05		<0.00							-		<0.05		
Indeno (1 2 3-cd) Pyrène	mg/kg MC	43%	0.05	:0.05	<0.05		<0.05	<0.05				-		<0.05		<0.061							-		<0.05		
Somme des HAD	mg/kg MS	43%	3,05	0.051	<0.05		<0.05	<0.05						<0.05		<0.001							+	[<0.05		
PCB 28	mg/kg MC	320/	0.01	0.031	<0.03		<0.034	<0.03						<0.03 <0.052		<0.07							+	[<0.05		
PCB 52	mg/kg MC	30%	0.01	0.01	<0.01		<0.01	<0.01				+		<0.01		<0.01							+		<0.01		
PCB 101	mg/kg MC	30%	0.01	0.01	<0.01		<0.01	<0.01				1		<0.01		<0.01							+		<0.01		
PCB 118	mg/kg MC	35%	0.01	0.01	<0.01		<0.01	<0.01				1		<0.01		<0.01							+		<0.01		
PCB 138	mg/kg Mc	37%	0.01	-0.01	<0.01		-0.01	<0.01				1		<0.01		<0.01							-		<0.01		
PCB 153	mg/kg MC	37%	0.01	0.01	<0.01		<0.01	<0.01				-		<0.01		<0.01							-		<0.01		
PCB 180	mg/kg MC	32%	0.01	0.01	<0.01		<0.01	<0.01				+		<0.01		<0.01							+		<0.01		
SOMME PCB (7)	mg/kg MC	34%	0,01 <	0.01	<0.01		<0.01	<0.01				+		<0.01		<0.01							+		<0.01		
55111112 · CD (7)	118/18 113		· · · · · · · · · · · · · · · · · · ·	·0.01	-0.01		~U.UI	NU.01						10.01		~0.01									-0.01		1

	Référence EUROFINS : 17E056540-022		17E056540-023	17E056540-024	17E057887-001	1	7E057887-002 17E05788	37-003	17E05788	7-004 1	17E057887-005	17E057887-00	6 17E0578	87-007	17E057887-008	17E0	057887-009	17E057887-010	17E057887-011	17E057	7887-012 17E		
	N° GEOD			P060	P061	P062	P063		P064 P06	65	P06	6	P067	P068	P	069	P070		P071	P074	P075		P076
	Référence	Client :		PIF-17-SOL-38-0-5	PIF-17-SOL-39A-	0-5 PIF-17-SOL-39B-	5-15 PIF-17-SOL-40-0-	10 P	PIF-17-SOL-41-0-15 PIF-17-SO	L-42-0-5	PIF-17-SOI	L-43-0-5 F	PIF-17-SOL-44-0-6	5 PIF-17-SOL-45	-0-10 PIF-17-SC	DL-46-0-20	PIF-17-SOL-47-0	20 PIF-1	17-SOL-48-0-10	PIF-17-SOL-49-0-10	PIF-17-SOL-50-0-1	0 PIF-17-	SOL-51-0-10 PIF-
Parametres Matilian elabora	Unites	Incertitude		1 76.1		2.0	07.5	17	04.6	77.0		00.5	86.0	e	07.2	76.6		01	02.5			6	00.7
Refus pendéral à 2 mm	% P.D.	5%	° 0,1	1 70,1	5	33,9	87,5 8	1,/	84,0	15.4		90,5	80,0	2	87,3	76,6		10	82,5	83,4	90	,0 :2	90,7
Prénaration physico-chimique (séchage à 40°C)	701.0.		-	- 3,02	-	.,55	20,3 1	,50	-	15,4	-	5,04	- 3,02	-	13,1	2,40	-	15	1,00	-	-		55,8
Granulo - Tranche 0.02µm à 2µm	%		-																				
Granulo - Tranche 2um à 20um	%		-														1						
Granulo - Tranche 20um à 63um	%																						
Granulo - Tranche 63µm à 200µm	%		-																				
Granulo - Tranche 200µm à 2000µm	%																						
Cyanures totaux																							
pH extrait à l'eau				7,5		6,9	7,9	7,8	7,3	7,6	5	7,3	7,2	2	6,6	6,7	,	6	7,6	8,6	ί ε	,7	8,6
Température de mesure du pH	°C			20		21	22	21	21	20)	21	20	D	21	21		21	20	21		20	21
Carbone Organique Total par Combustion	mg/kg M	5 40%	6 1000	0 94200	69	100 20	178	300	48600	114000)	86800	114000	9 0	0500	36500	24:	00	49800	18000	243	00	49100
Coefficient de variation (CV)																							
Minéralisation Eau Régale - Bloc chauffant après p	1			-	-	-	-	-	-		-	-	-	-	-		-	-		-	-	-	-
Aluminium (Al)	mg/kg M	5 23%	6 5	5 8920	13	900 15	800 188	300	13500	11400)	13200	17300	2 2	1800	19000	20	00	11200	18100	112	00	11400
Antimoine (Sb)	mg/kg M	5 35%	6 1	1 4,23	<1.00	<1.00	3	,57	3	2,27		3,07	3,22	2	3,6	3,61	. 3	37	2,57	3,85	2,	21	1,89
Argent (Ag)	mg/kg M			5 <5.00	<5.00	<5.00	<5.43	<	5.00 <5.28	52.2	<5.00	74.0	<5.00	<5.00	<5.22	CO 4	<5.00	<5.5	3	<5.00	<5.00	<5.02	<5.1
Arsenic (As)	mg/kg M	40%		1 262	3	37,6	44,5 4	9,3	/6,6	53,2	-	/1,8	54,1	1	/1,5	68,1	/	5,7	164	35,3	2	52	138
Cadmium (Cd)	mg/kg M	30%	° 1	1 33,3	<0.40	-0.40	40,5 5	2,5	43,5	84,4	2	54,6	03,2	2	0.51	86,7	/	2,6	44,5	40,1	. 3:	,5	51,7
Calcium	ma/ka M	40%	50,2	4 0,75	<0.40 E	720	220 60	50	7960	22700		12000	6010	2	5020	0,40		50	20200	1/200	629	10	66200
Chrome (Cr)	mg/kg M	35%	6 6	5 11.6	3	6.5	17.3 1	9.4	16	15 2		15 1	17/	4	20.6	21 8	2	2.2	12.8	19/	1	.6	14.4
Cobalt (Co)	mg/kg M	5	1	1 14.9	1	17,9	21 2	1,3	17.1	18.5	5	15.8	21.1	1	20,5	19.9	2	2,3	16.6	23.6	1	,2	16
Cuivre (Cu)	mg/kg M	45%	6 5	5 1380	-	43	37,3 2	9,5	49,3	90.8	3	65,4	45.5	5	44,9	40	4	3,9	138	43.3	57	,4	82,8
Etain (Sn)	mg/kg M	5 30%	6 5	5 <5.00	<5.00	<5.00	<5.43	<	5.00 <5.28		<5.00		<5.00	<5.00	<5.22		<5.00	<5.53	i3 ·	<5.00	<5.00	<5.02	<5.1
Fer (Fe)	mg/kg M	5 25%	6 5	5 116000	47	100 55	600 480	000	37800	38100)	41500	49000	0 5	2400	44700	484	00	40800	54600	345	00	35300
Magnésium (Mg)	mg/kg M	5	5	5 4980	6	550 7	340 94	10	6820	7160)	7330	7230	D	7860	7820	8	10	7540	7880	96	10	8320
Manganèse (Mn)	mg/kg M	5 30%	6 1	1 619	1	270 1	.420 16	570	1090	1400)	1280	1640	0	1820	1370	1	20	729	1110	6	22	681
Molybdène (Mo)	mg/kg M	5 40%	6 1	1 1,95	<1.00	<1.00	<1.09	<	1.00 <1.06		<1.00	<	<1.00	<1.00	<1.04		<1.00	<1.13	.1	1,03	<1.00	<1.00	<1.0
Nickel (Ni)	mg/kg M	5 40%	6 1	1 23,5	3	34,9	42,7 3	6,6	29,6	29,4	l I	29	34,8	В	35,3	35,7	3	9,3	25,6	41,4	25	,3	25
Plomb (Pb)	mg/kg M	35%	6 5	5 44,9	3	32,8	33,6 3	5,7	33,8	81	1	38,9	39,4	4	60,3	52		46	43,6	28,7	34	,2	29,1
Potassium	mg/kg M	5	20	0 844		532	902 7	32	553	893	3	677	666	5	826	912	1	19	722	586	8	85	1090
Silicium	mg/kg M	5	10	0 28/0		814 1	.280 E	90 5 5	//6	/4/	,	/6/	//:	3	744	596		02	843	992	5	36	610
Sodium (Na)	mg/kg M	250	20	55,8		129	50,3 4	5,5	49,2	53,9	9	107	42,7	/	57,6	46,4	4	2,3	//,4	39,2		34	114
Tungstàno	mg/kg M	23%	0 10	0 2840		5,7	108 0	0,0	74,8	59,7		90,4	43,8	5	91,5	53,1	<10.0	49	110	-10.0 -10.0	38	,3	254
Vanadium (V)	mg/kg M	5 15%	6 1	1 14.7		18.4	19.5	21	96,0	13.0	2	201	19 -	7	24,5	22.7	2 2	3.7	1/1 3	10.0	3	2	17.4
Zinc (Zn)	mg/kg M	5 50%	6 5	5 305		132	140 2	21	201	520	,)	179	237	7	24,5	22,7	2	72	219	13,	1	57	183
Mercure (Hg)	mg/kg M	20%	6 0.1	1														. –			-		
Indice Hydrocarbures (C10-C40)	mg/kg M	49%	6 15	5																			
HCT (nC10 - nC16) (Calcul)	mg/kg M	5																					
HCT (>nC16 - nC22) (Calcul)	mg/kg M	5																					-
HCT (>nC22 - nC30) (Calcul)	mg/kg M	5																					
HCT (>nC30 - nC40) (Calcul)	mg/kg M	5																					
Naphtalène	mg/kg M	5 32%	6 0,05	5																			
Acénaphthylène	mg/kg M	5 30%	6 0,05	5																			
Acénaphtène	mg/kg M	5 25%	6 0,05	5				_															
Huorene	mg/kg M	32%	6 0,05	5				\rightarrow						+				_					
Anthracing	mg/kg M	31%	6 0,05	5				_															
Antiracene	mg/kg M	20%	6 0,05 6 0,05	5														-					
Pyrène	ma/ka M	3/1%	4 0.05	5				-															
Benzo-(a)-anthracène	mg/kg M	29%	6 0.05	5																			
Chrysène	mg/kg M	33%	6 0.05	5																			
Benzo(b)fluoranthène	mg/kg M	36%	6 0,05	5																			
Benzo(k)fluoranthène	mg/kg M	5 41%	6 0,05	5																			
Benzo(a)pyrène	mg/kg M	5 37%	6 0,05	5																			
Dibenzo(a,h)anthracène	mg/kg M	5 43%	6 0,05	5																			
Benzo(ghi)Pérylène	mg/kg M	5 43%	6 0,05	5																			
Indeno (1,2,3-cd) Pyrène	mg/kg M	5 43%	6 0,05	5																			
Somme des HAP	mg/kg M	5	_	-																			
PCB 28	mg/kg M	32%	6 0,01	1										+									
PCB 52	mg/kg M	30%	6 0,01	1							I							_				_	
PCB 101	mg/kg M	39%	6 0,01	1				-+						+									
PCD 118	mg/kg M	37%	0,01	1										+				_				-	
PCB 153	mg/kg M	5/%	6 0,01	1				+			<u> </u>			+							1	-	<u> </u>
PCB 180	mg/kg M	5 34%	6 0.01	1				+						+									
SOMME PCB (7)	mg/kg M	54%	0,01								1												
									L		J						ــــــــــــــــــــــــــــــــــــــ	_			ı		l

E057887-013	17E057887-014												
P077	P078												
-17-SOL-52-0-15	PIF-17-SOL-53-0-10												
67.3	75.4												
4 59	63.9												
4,55	03,5												
	-												
8,2	7,6												
20	21												
55900	94400												
	-												
1/1700	17500												
14700	12300												
2,86	2,63												
.14	<5.89												
94,8	40,9												
36,6	59,3												
0.59	0.51												
36300	10200												
30200	10500												
16,8	15,3												
18,3	17,8												
92,3	55												
.14	<5.89												
42700	40700												
8770	5510												
5770	1000												
/34	1080												
.03	<1.18												
30,5	29,7												
29,6	44												
678	612												
891	766												
001	,00												
18	3/												
89,8	40,6												
716	37,2												
15,9	15,6												
168	251												
-													
-													
-													
	Référence E	EUROFINS :		17E057887-015	17E057887-016	17E058935-001	17E058935-002	17E058935-003	17E058935-004	17E058935-005	17E058935-006	17E058935-007	17E058935-008
--	-------------	-------------	---------------	---------------	-------------------	---------------------	---------------------	------------------------	-------------------	--------------------	--------------------	--------------------	--------------------
	N° GEOD			P080	P081	P082	P083	P084	P085	P086	P087	P088	P089
	Référence (Client :	_	PIF-17-SOL-54	PIF-17-SOL-55-0-5	PIF-17-SOL-56A-0-10	PIF-17-SOL-56B-0-10	PIF-17-SOL-56C-0-10	PIF-17-SOL-57-0-5	PIF-17-SOL-58-0-10	PIF-17-SOL-59-0-10	PIF-17-SOL-60-0-20	PIF-17-SOL-61-0-10
Paramètres	Unités	Incertitude	e LQ										
Matière sèche	% P.B.	0,05	0,1	66	68,6	58,5	69,8	65,7	83,4	77,4	69,7	69	69,9
Refus ponderal a 2 mm	% P.B.		1	28,2	22,4	24	46	13	39,8	13,9	1,27	20,8	18,8
Granulo - Tranche 0.02um à 2um	%			1.86	- 2.96	-	-	-	-	-	-	-	1 66
Granulo - Tranche 2um à 20um	%			23.16	33 58								20.85
Granulo - Tranche 20µm à 63µm	%			21.03	35,73								23.07
Granulo - Tranche 63μm à 200μm	%			19,01	16,98								20,9
Granulo - Tranche 200µm à 2000µm	%			34,94	10,75								33,52
Cyanures totaux													
pH extrait à l'eau				8,5	7,8	7,2	7,1	8,6	8,4	8,1	6,2	7,4	8,4
Température de mesure du pH	°C			21	20	21	21	21	21	21	21	20	21
Carbone Organique Total par Combustion	mg/kg MS	40%	1000	19600	61600	83000	33800	33100	43200	43600	61600	62500	34400
Coefficient de variation (CV)													
Minéralisation Eau Régale - Bloc chauffant après p	//		-	-	-	-	-	-	-	-	-	-	-
Aluminium (Al)	mg/kg MS	23%	5	16100	10200	14900	18500	15500	18000	12800	15400	1/500	12900
Antimoine (Sb)	mg/kg IVIS	35%	1	4,95	<1.10	6,72	8,43	7,24	4,11	4,43	5,69	5,92	3,12
Argent (Ag)	mg/kg IVIS	40%	5	<5.00	<5.51	<5.00	<5.00	<5.00	<5.00	<5.00	<5.32	<5.00	<5.00
Arsenic (As)	mg/kg MS	25%	1	/4,/	11,0	59,5	08,5 68,6	60	40,0	27.4	53,2	44,0	79,9
Cadmium (Cd)	mg/kg MS	40%	0.4	41,5	<0.44	-0.40	<0.40	<0.40	105	0.92	-0.42	0.77	0.61
Calcium	mg/kg MS	4070	50	18500	×0.44 \$110	<u> </u>	5720	<u></u> <u></u> 	43900	21300	<u> </u>	12700	34200
Chrome (Cr)	mg/kg MS	35%	5	19.1	11.6	17	19.7	17.7	26.2	14.6	17.2	18.9	14
Cobalt (Co)	mg/kg MS		1	26.7	5.53	25.5	26.1	23.8	22.4	23	25.9	27.3	18.9
Cuivre (Cu)	mg/kg MS	45%	5	51,5	42,3	51,4	54,2	48,8	95,2	239	44	77,5	118
Etain (Sn)	mg/kg MS	30%	5	<5.00	6,27	<5.00	<5.00	<5.00	31,2	<5.00	<5.32	<5.00	<5.00
Fer (Fe)	mg/kg MS	25%	5	47300	9080	54700	60100	52100	46900	49600	54200	55100	38900
Magnésium (Mg)	mg/kg MS		5	10500	4590	4220	4110	3540	6510	7120	3540	4820	7910
Manganèse (Mn)	mg/kg MS	30%	1	595	282	1220	1270	1130	1210	719	1590	1710	588
Molybdène (Mo)	mg/kg MS	40%	1	<1.00	<1.10	<1.00	<1.00	<1.00	<1.00	<1.00	<1.06	1,89	<1.00
Nickel (Ni)	mg/kg MS	40%	1	41,6	10,3	38,7	43	38,4	35,2	29,2	35,5	41,2	28,7
Plomb (Pb)	mg/kg MS	35%	5	34,1	56,4	31,6	32,6	30,3	125	35,6	42	46,5	29,3
Potassium	mg/kg MS		20	341	723	1120	952	738	1240	466	709	1730	557
Silicium	mg/kg MS		10	974	349	397	415	592	503	1650	538	450	839
Sodium (Na)	mg/kg MS		20	71	484	36,9	53,8	32,5	217	59,8	44,5	117	83,2
Titane (Ti)	mg/kg MS	25%	5	87,9	33,9	23,4	26,9	31,3	129	49,4	26,3	93,6	74,5
Tungstène	mg/kg MS		10	381	204	28,7	485	400	548	834	425	438	737
Vanadium (V)	mg/kg MS	15%	1	18,7	21,7	17,3	23,9	20,3	28,2	14,8	20	34,3	14,2
Zinc (Zn)	mg/kg MS	50%	5	214	94,2	148	148	132	418	176	153	228	181
Mercure (Hg)	mg/kg MS	20%	0,1	1									l
Indice Hydrocarbures (C10-C40)	mg/kg IVIS	49%	15										l
HCT (hC10 - hC16) (Calcul)	mg/kg IVIS	-											
HCT (>nC16 - nC22) (Calcul)	mg/kg IVIS	-	-	-									<u> </u>
HCT (>nC30 - nC40) (Calcul)	mg/kg MS												
Naphtalène	mg/kg MS	32%	0.05										
Acénaphthylène	mg/kg MS	30%	0.05										
Acénaphtène	mg/kg MS	25%	0.05						1			1	1
Fluorène	mg/kg MS	32%	0,05										
Phénanthrène	mg/kg MS	31%	0,05										
Anthracène	mg/kg MS	28%	0,05										
Fluoranthène	mg/kg MS	34%	0,05										
Pyrène	mg/kg MS	34%	0,05										
Benzo-(a)-anthracène	mg/kg MS	29%	0,05										
Chrysène	mg/kg MS	33%	0,05										
Benzo(b)fluoranthène	mg/kg MS	36%	0 <i>,</i> 05										
Benzo(k)fluoranthène	mg/kg MS	41%	0,05										
Benzo(a)pyrène	mg/kg MS	37%	0,05	_									
Dibenzo(a,h)anthracène	mg/kg MS	43%	0,05										l
Benzo(ghi)Pérylène	mg/kg MS	43%	0,05	-									l
Indeno (1,2,3-cd) Pyrene	mg/kg MS	43%	0,05										l
Somme des HAP	mg/kg MS	220/	6.01										l
PCB 28	mg/kg MS	32%	0,01										l
PCB 32	mg/kg MS	30%	0,01										l
DCB 119	mg/kg MS	39%	0,01										l
PCB 138	mg/kg MS	37%	0,01	-									l
PCB 153	mg/kg MS	32%	0,01										l
PCB 180	mg/kg MS	34%	0.01										
SOMME PCB (7)	mg/kg MS		5,01						1				

LA PIC DU FO	Référence E	UROFINS :		17E058935-009	17E058935-010	17E058935-011	17E058935-012	17E059377-001	17E059377-002	17E059377-003	17E059377-004	17E059377-005	17E059377-006	17E059377-007	17E059377-008	17E059377-009
	N° GEOD			P090	P091	P092	P103	P106	P107	P109	P110	P111	P112	P113	P114	P115
	Référence C	lient :		PIF-17-SOL-62-0-10	PIF-17-SOL-63-0-30	PIF-17-SOL-64-0-15	PIF-17-SOL-65-0-15	PIF-17-SOL-66-0-15	PIF-17-SOL-67-0-15	PIF-17-SOL-68-0-10	PIF-17-SOL-69-0-10	PIF-17-SOL-70-0-10	PIF-17-SOL-71-0-10	PIF-17-SOL-72-3-13	PIF-17-SOL-73-0-10	PIF-17-SOL-74-4-15
Paramètres	Unités	Incertitude	LQ													
Matière sèche	% P.B.	0,05	0,1	76,5	81,8	82	78	74	69	70,9	78,3	71,8	75	74,1	69,3	81,2
Refus pondéral à 2 mm	% P.B.		1	<1.00	<1.00	1,04	<1.00	37,4	6,56	45,4	4,49	40,9	2,88	<1.00	39,2	4,35
Préparation physico-chimique (séchage à 40°C)				-		-	-	-	-	-	-	-	-	-	-	-
Granulo - Tranche 0.02um à 2um	%			1.77		1.6							1.76	2.34	2.3	2.07
Granulo - Tranche 2um à 20um	%			21		18.9							21.26	25.49	26.54	23.85
Granulo - Tranche 20um à 63um	%			22.1		20,5							20,66	23,13	23,37	15 13
Granulo - Tranche 62um à 200um	9/			15 21		10.1							20,00	16.49	23,37	19,15
Granulo - Tranche 300um à 2000um	76 9/	-	-	20.02		20.59							20.27	22.00	21,1	10,70
	70		-	39,82		39,58							39,37	32,98	20,09	13,34
Cyanures totaux			-	0.4	0.4		0.0	0.1	-	0.4	0.1			0.1	0.6	44.00
pH extrait a l'eau		-		8,1	8,4	8,4	8,3	8,1	/	8,1	8,1	6,6	8,4	8,1	8,6	41,96
Température de mesure du pH	°C			21	21	21	21	21	20	21	21	21	20	21	20	21
Carbone Organique Total par Combustion	mg/kg MS	40%	1000	72200	11800	45900	27000	31600	30600	46800	22600	26300	35500	39700	17000	16400
Coefficient de variation (CV)																
Minéralisation Eau Régale - Bloc chauffant après p					-	-	-	-	-	-	-	-	-	-	-	-
Aluminium (Al)	mg/kg MS	23%	5	14700	14000	13500	15500	24400	33200	19800	15600	20900	14100	12700	12500	14300
Antimoine (Sb)	mg/kg MS	35%	1	3,55	2,91	4,19	4,14	5,63	4,62	3,62	2,56	7,14	1,52	1,74	4,48	4,48
Argent (Ag)	mg/kg MS		5	<5.04	<5.00	<5.00	<5.07	<5.00	<5.11	<5.17	<5.00	<5.27	<5.00	<5.00	<5.00	<5.00
Arsenic (As)	mg/kg MS	40%	1	55,2	56,1	55,8	53,8	51,6	28,4	36,9	92	41,6	53,2	73,9	48,9	65
Baryum (Ba)	mg/kg MS	35%	1	49,9	119	24,7	109	49	78,7	87,8	33,4	65,4	24,9	38,1	24,9	26,6
Cadmium (Cd)	mg/kg MS	40%	0,4	0,85	0,79	1,15	1,43	1,01	0,94	1,02	1,54	1,11	1,25	1,44	0,87	1
Calcium	mg/kg MS		50	22900	51100	33800	38900	17000	6170	36000	27100	4270	48600	22800	47900	38700
Chrome (Cr)	mg/kg MS	35%	5	18.5	163	15.7	18.6	30.7	42.9	24.9	18.5	24 5	17	15.5	14 7	16.7
Cobalt (Co)	mg/kg MS		1	20,5	16.8	19.4	195	26.7	21 2	21	28.2	25.5	19.2	21.0	18.4	21.6
	mg/kg MS	45%	5	23,3	1/0	12/4	129,5	20,7	A2 0	92.4	20,2	50.2	61.6	110	±0,4 51	106
Etain (Sn)	mg/kg MS	30%	5	02,5 ZE 04	14U	-5 00	-5.07	50,5 <5.00	+3,0 ~5 11	JZ,4	243 25.00	JU,3	~5 00	113	25.00	
	ilig/kg IVIS	30%	5	<5.04	0,94	<5.00	\$5.07	<5.00	<5.11	<5.17	\$5.00	<5.2/	<5.00	<5.00	<5.00	<5.00
rer (re)	mg/kg IVIS	25%	5	44300	38500	42700	43700	51500	42400	41500	54600	49300	38000	40500	36800	43600
Magnesium (Mg)	mg/kg IVIS	2001	5	8070	8790	/8/0	9470	11400	11000	10200	9440	/8/0	8290	/100	8140	9610
Manganese (Mn)	mg/kg IVIS	30%	1	/32	/29	541	680	1000	1350	1420	/98	1540	610	612	492	530
Molybdène (Mo)	mg/kg MS	40%	1	2,26	1,62	1,8	1,99	2,56	1,72	1,53	2,62	3,9	1,56	1,88	1,99	2,01
Nickel (Ni)	mg/kg MS	40%	1	54,7	31,8	35,7	37,6	52,7	46,4	42,6	45,8	55,9	38,7	37,5	37,1	38,4
Plomb (Pb)	mg/kg MS	35%	5	131	46,3	31,6	109	113	215	74,6	42,6	35,7	28	31,7	32,7	29,5
Potassium	mg/kg MS		20	698	883	564	706	1060	2340	1620	632	672	588	480	393	472
Silicium	mg/kg MS		10	724	620	862	862	350	251	428	2190	482	1540	1720	1230	927
Sodium (Na)	mg/kg MS		20	85,6	107	81,6	118	217	376	190	107	73,1	70,5	58	69,5	74,9
Titane (Ti)	mg/kg MS	25%	5	92,8	99,1	97,2	128	301	507	218	115	91,8	85,6	88	86,4	132
Tungstène	mg/kg MS		10	668	680	696	679	96.8	<10.2	49.7	529	<10.5	97.8	387	123	353
Vanadium (V)	mg/kg MS	15%	1	48.9	36.1	21.5	24	42.7	58.5	31.2	24.1	42.9	20.9	19.4	19	23.5
Zinc (Zn)	mg/kg MS	50%	5	380	225	183	245	229	226	265	212	192	210	189	177	168
Mercure (Hg)	mg/kg MS	20%	- 0	1	225	105	215	225	220	200		102	210	105	277	
Indice Hydrocarbures (C10-C40)	mg/kg MS	19%	15	-												
HCT (nC10 - nC16) (Calcul)	mg/kg MS	1370														
	mg/kg MS		-													
	ilig/kg IVIS		_													
HCT (>nC22 - nC30) (Calcul)	mg/kg IVIS		_													
nci (2009 - nc40) (Calcul)	ing/kg IVIS	220/	0.05							+					+	+
Naphtalene	mg/kg MS	32%	0,05													
Acenaphthylène	mg/kg MS	30%	0,05													<u> </u>
Acénaphténe	mg/kg MS	25%	0,05													<u> </u>
Fluorène	mg/kg MS	32%	0,05													<u> </u>
Phénanthrène	mg/kg MS	31%	0,05							1					1	<u> </u>
Anthracène	mg/kg MS	28%	0,05													<u> </u>
Fluoranthène	mg/kg MS	34%	0,05													
Pyrène	mg/kg MS	34%	0,05													
Benzo-(a)-anthracène	mg/kg MS	29%	0,05													
Chrysène	mg/kg MS	33%	0,05													
Benzo(b)fluoranthène	mg/kg MS	36%	0,05													
Benzo(k)fluoranthène	mg/kg MS	41%	0.05													
Benzo(a)pyrène	mg/kg MS	37%	0.05													-
Dibenzo(a b)anthracène	mg/kg MS	43%	0.05													
Benzolghi)Pérylène	mg/kg MS	43%	0.05													+
Indono (1.2.2.cd) Duràno	mg/kg MS	43%	0,05	-						+	+			+	+	+
Sommo dos HAD	mg/kg MC	-370	0,03	-						+	+			+	+	+
	mg/kg IVIS	2.29/	0.01						1							+
	mg/kg MS	32%	0,01													+
PCB 52	mg/kg MS	30%	0,01							+					+	
PCB 101	mg/kg MS	39%	0,01													
PCB 118	mg/kg MS	37%	0,01							1					1	<u> </u>
PCB 138	mg/kg MS	37%	0,01													
PCB 153	mg/kg MS	32%	0,01													
PCB 180	mg/kg MS	34%	0,01								· · · · · · · · · · · · · · · · · · ·					
SOMME PCB (7)	mg/kg MS															

<u>Annexe 5</u>

Cartes de localisation des prélèvements de sédiments et d'eaux de surface, et synthèse des teneurs en arsenic et tungstène

and the second second

Diagnostic environnemental sur le secteur minier du Pic-de-la-Fourque (09)

Carte des teneurs en Tungstène des sédiments

résultats des analyses en laboratoire

Légende Teneur en Tungstène en PPM des sédiments o - 100 100 - 500 △ >500

Remarque : les valeurs de teneurs en Tungstène dans l'eau étant inférieur à la limite de détection, elles n'ont pas été représentées sur la carte.

Rapport GEODERIS 2019-094DE - 19MPY36030

<u>Annexe 6</u>

Résultats analytiques des prélèvements d'eau de surface nm : non mesuré

	Référence EL	JROFINS :		17E052650-007	17E052650-014	17E053342-006	17E053342-015	17E053342-007	17E053342-016
	Site :			MINE	MINE	MINE	MINE	MINE	MINE
	Référence Cl	ient :		PIF-17-ESU-101	PIF-17-ESU-F101	PIF-17-ESU-102	PIF-17-ESU-F102	PIF-17-ESU-103	PIF-17-ESU-F103
Paramètres	Unités	Incertitude	LQ						
pH (terrain)				nm		nm		nm	
Conductivité (terrain)	μS/cm			nm		nm		nm	
Température (terrain)	°C			nm		nm		nm	
pH									
Conductivite	μs/cm °c								
Filtration 0.45 um				Effoctuóo		Effoctuóo		Effoctuóo	
nH				75		7.6		7.8	
Température de mesure du pH	°C			20.3		19.8		19.4	
Matières en suspension	mg/l	15%	2	2.4		<2.0		<2.0	
Titre Alcalimétrique simple (TA)	°F	5%	2	<2.00		<2.00		<2.00	
Titre Alcalimétrique complet (TAC)	°F	5%	2	7,1		3,8		4,8	
Anhydride carbonique agressif	mg/l					1,82		1,28	
Anhydride carbonique libre	mg/l					2,02		1,61	
Anhydride carbonique équilibré	mg/l					0,2		0,33	
Nitrates	mg NO3/I	35%	1	1,22		<1.00		<1.00	
Azote nitrique	mg N-NO3/I	35%	0,2	0,28		0,2		<0.20	
Chlorures	mg/l	30%	1	<1.00		<1.00		1,59	
Sulfates	mg/l	20%	5	7,59		<5.00		<5.00	
Demande chimique en oxygène (DCO)	mg O2/I	15%	30	<30		<30		<30	
DBO-5	mg O2/I	30%	3	<3		<3		<3	
Carbone Organique par oxydation	mg C/I	10%	0,5	<0.5		<0.5		<0.5	
Cyanures totaux	μg/l	40%	10						
Aluminium (Al)	mg/l	30%	0,05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
	mg/l	30%	1	30,9	-0.01	14	0.01	1/,4	-0.01
Fer (Fe)	mg/l	20%	0,01	<0.01	<0.01	0,01	0,01	<0.01	<0.01
Describers	mg D //	30%	0,01	1,3/		0,78	<0.00F		
Priosphore Potassium (K) solublo	mg/l	40%	0,005	<0.005	<0.005	0,01	<0.005	<0.005	<0.005
Silicium	mg/l	40%	0,1	1 98	1 92	1.63	1 71	1.05	1 1/
Sodium soluble	mg/l	35%	0.05	0.24	1,72	0.4	1,/1	0.47	±,±4
Strontium (Sr)	mg/l	5570	0.005	0.032	0.037	0.011	0.011	0,16	0.016
Antimoine (Sb)	ug/l	30%	0.2	1 16	0.94	<0.20	<0.20	<0.20	<0.20
Argent (Ag)	ug/l	25%	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Arsenic (As)	μg/l	20%	0,2	2.08	1.68	0.38	<0.20	<0.20	<0.20
Baryum (Ba)	μg/l	15%	0,2	0,76	0,64	0,33	<0.20	0,47	0,31
Cadmium (Cd)	μg/l	20%	0,2	0,54	<0.20	<0.20	<0.20	<0.20	<0.20
Chrome (Cr)	μg/l	30%	0,5	<0.50	<0.50	<0.50	1,41	<0.50	<0.50
Cobalt (Co)	μg/l	15%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cuivre (Cu)	μg/l	20%	0,5	<0.50	<0.50	<0.50	6,64	<0.50	<0.50
Etain (Sn)	μg/l	30%	1	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Manganèse (Mn)	μg/l	25%	0,5	<0.50	<0.50	3,52	0,66	1,56	<0.50
Molybdène (Mo)	μg/l	20%	0,2	0,41	<0.20	<0.20	<0.20	<0.20	<0.20
Nickel (Ni)	μg/l	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Plomb (Pb)	μg/l	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Titane (Ti)	μg/l	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Tungstène	μg/l	0.50/	5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Vanadium (V)	μg/I	35%	0,2	<0.20	<0.20	<0.20	0,21	<0.20	<0.20
	μg/1	200/	5	54,3	49,9	<5.00	<5.00	<5.00	<5.00
Iviercure (Hg)	μg/1	30%	0,2	-0.02					
HCT (pC10 - pC16) (Coloul)	mg/l	20%	0,03						
HCT (>nC16 - nC22) (Calcul)	mg/l		0.008						
HCT (>nC22 - nC30) (Calcul)	mg/l		0.008	<0.008					<u> </u>
HCT (>nC30 - nC40) (Calcul)	mg/l		0,008	< 0.008	•	1			<u> </u>
Naphtalène	μg/l	36%	0,01	0,01					
Acénaphthylène	μg/I	33%	0,01	<0.01					
Acénaphtène	μg/I	38%	0,01	<0.01					
Fluorène	μg/I	41%	0,01	<0.01					
Anthracène	μg/I	44%	0,01	<0.01					
Fluoranthène	μg/I	42%	0,01	<0.01					
Pyrène	μg/I	41%	0,01	<0.01					
Benzo-(a)-anthracène	μg/l	33%	0,01	<0.01					
Chrysène	μg/l	33%	0,01	<0.01					
Benzo(b)fluoranthène	μg/l	34%	0,01	<0.01					
Benzo(k)fluoranthène	μg/l	28%	0,01	< 0.01					
Benzo(a)pyrene	μg/1	50%	0,0075	<0.0075		<u> </u>	<u> </u>		
	μg/1	34%	0,01	<0.01		<u> </u>	<u> </u>		
Dhénanthràna	μg/1	35%	0,01	<0.01					
Benzo(ghi)Dérulène	μg/1	30%	0.01	<0.01 <0.01					
Somme des HAD	μg/1	55%	0,01	0.01 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
PCB 28	με/Ι	35%	0.01	<0.01					<u> </u>
PCB 52	μg/l	55%	0,01	<0.01					
PCB 101	μg/l	50%	0,01	<0.01					
PCB 118	μg/I	35%	0,01	< 0.01					
PCB 138	μg/l	35%	0,01	<0.01					
PCB 153	μg/l	35%	0,01	<0.01					
PCB 180	μg/I	35%	0,01	<0.01					
SOMME PCB (7)	μg/l			<0.07					

Page 146

RAPPORT 2019/094DE BIS - 19MPY36030

	Référence	EUROFINS :		17E052650-001	17E052650-008 17	E052650-002	17E052650-009	17E052650-003	17E052650-010	17E052650-004	17E052650-011 17E	052650-005	17E052650-012	17E052650-006	17E052650-013	17E053342-001	17E053342-010	17E053342-002	17E053342-011	17E053897-001	17E053897-009	17E053897-005
	Site :		AV1 AV1 AV1 AV1		AV1	AV1	AV1	AV1	AV1 AV1		AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1		
	Référence	Client :		PIF-17-ESU-01	PIF-17-ESU-01F PIF	F-17-ESU-02	PIF-17-ESU-02F	PIF-17-ESU-03	PIF-17-ESU-03F	PIF-17-ESU-04	PIF-17-ESU-04F PIF-	17-ESU-05	PIF-17-ESU-05F	PIF-17-ESU-06	PIF-17-ESU-06F	PIF-17-ESU-07	PIF-17-ESU-F07	PIF-17-ESU-08	PIF-17-ESU-F08	PIF-17-ESU-12	PIF-17-ESU-F12	PIF-17-ESU-16
Paramètres	Unités	Incertitude	LQ																			
pH (terrain)				8,03		7,88		7,9		7,88		8		8,4		8,1		8,2		8,3		8,24
Conductivité (terrain)	μS/cm			84,8		92		86		249		108		224		119		234		258		259
Température (terrain)	°C			9,7		7,8		11,2		12,7		10,9		7,5		11,1		15		17,1		16,6
Filtration 0.45 μm		_		Effectuée		Effectuée		Effectuée		Effectuée	E	ffectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée
pH Tompératura de mosura du pH	°C	_		7,7		7,6		7,8		7,9		7,8		8,3		7,8		8,3		8,3		8,3
Matières en susnension	mg/l	15%	2	20,9		<2.0		20,0		<2.0		20,2		20,6		19,5		19,5		2 1		13,3
Titre Alcalimétrique simple (TA)	°F	5%	2	<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00
Titre Alcalimétrique complet (TAC)	°F	5%	2	4,3		3,5		4,3		4,9		4,6		11,6		5,3		12,1		13,7		13,6
Anhydride carbonique agressif	mg/l															1,33		0		0		0
Anhydride carbonique libre	mg/l															1,76		1,23		1,39		1,49
Anhydride carbonique équilibré	mg/l	_														0,43		1,23		1,39		1,49
Nitrates	mg NO3/I	35%	1	1,39		1,01		<1.00		<1.00		1,79		1,52		1,53		1,53		1,9		1,44
Azote nitrique	mg N-NO3	i/l 35%	0,2	0.31		0.23		0.2		0.21		0.41		0.34		0.35		0.35		0.43		0.33
Chlorures	mg/l	30%	1	<1.00		<1.00		<1.00		<1.00		1.43		1.13		<1.00		<1.00		1.59		<1.00
Sulfates	mg/l	20%	5	<5.00		11,2		<5.00		69,9		8,94		5,39		8,56		5,92		6,12		5,16
Demande chimique en oxygène (DCO)	mg ()2/l	15%	30																			
Demande eminique en oxygene (Deo)	111g 02/1	1370	50	<30		<30		<30		<30		<30		<30		<30		<30		<30		<30
DBO-5	mg O2/I	30%	3	<3		<3		<3		<3		<3		<3		3		<3		<3		<3
Carbone Organique par oxydation	mg C/I	10%	0,5	<0.5		0,5		<0.5		1,2		<0.5		0,69		0,54		0,57		1,1		0,67
Aluminium (Al)	mg/l	30%	0.05	<0.05	<0.05	<10	<0.05	<10	<0.05	<10	<0.05	<10	<0.05	<0.05	<0.05	₹10 <0.05	<0.05	₹10 <0.05	<0.05	₹10 <0.05	<0.05	<0.05
Calcium (Ca) soluble	mg/l	30%	1	11.3	<0.05	15.3	<0.05	11.6	<0.05	46.7	<0.05	18.6	<0.05	43.5	<0.05	19.5	<0.05	44	<0.05	43.2	<0.05	44
Fer (Fe)	mg/l	20%	0,01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	0,01	<0.01	<0.01	<0.01	<0.01	<0.01	0,04	< 0.01	<0.01	0,03	0,02	<0.01	<0.01
Magnésium dissous	mg/l	30%	0,01	3,53		0,94		3,53		0,72		2,54		3,79		2,57		2,24		2,67		1,97
Phosphore	mg P/I	30%	0,005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0,005	<0.005	< 0.005	<0.005	0,005	<0.005	<0.005
Potassium (K) soluble	mg/l	40%	0,1	<0.10		<0.10		<0.10		0,46		0,14		0,11		<0.10		0,15		0,11		<0.10
Silicium	mg/l	16%	0,02	0,88	0,9	1,35	1,37	0,84	0,88	2,25	2,3	1,2	1,21	1,58	1,63	1,25	1,3	1,83	1,86	1,87	1,96	1,61
Sodium soluble	mg/I	35%	0,05	0,33	0.016	0,54	0.027	0,31	0.012	1,03	0.07	0,55	0.026	0,36	0.064	0,63	0.026	0,63	0.072	0,56	0.115	0,37
Antimoine (Sh)	ing/i	30%	0,005	<0.20	<0.20	c0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0,033 <0.20	<0.20	0,028 <0.20	<0.20	6,073	0,075	0,1 <0.20	<0.20	<0.20
Argent (Ag)	μg/I	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	0.92	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Arsenic (As)	μg/I	20%	0,2	0,46	0,29	2,46	2,33	0,44	0,49	9,38	7,68	1,42	1,22	0,37	0,2	2,04	1,14	0,95	0,82	0,33	0,26	0,25
Baryum (Ba)	μg/I	15%	0,2	0,57	0,69	0,86	1,13	0,6	0,56	4,18	3,76	0,95	1,01	3,54	3,28	2,41	1,28	1,71	1,59	2	2,12	2,35
Cadmium (Cd)	µg/I	20%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrome (Cr)	µg/I	30%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cobalt (Co)	µg/l	15%	0,2	<0.20	<0.20	<0.20	0,32	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Etain (Sp)	μg/1 μg/1	20%	1	<0.50	<0.50	<0.50	0,55	<0.50	<0.50	2,03	1,18	<0.50	1,35	1,11	<0.50	1,11	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Manganèse (Mn)	ug/I	25%	0.5	1.33	<0.50	0.81	<0.50	1.62	<0.50	1.17	<0.50	1.42	<0.50	2.75	<0.50	5.81	<0.50	10.9	<0.50	6.46	<0.50	2.63
Molybdène (Mo)	μg/I	20%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0,31	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Nickel (Ni)	µg/I	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Plomb (Pb)	µg/I	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Titane (Ti)	µg/I	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Tungstène	µg/l	250/	5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Vanadium (V) Zinc (Zn)	μg/1 μg/1	35%	0,2	<0.20	<0.20	<0.20	0,31	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Mercure (Hg)	μg/I	30%	0,2	<0.20	\$3.00	<0.20	\$3.00	<0.20	\$3.00	<0.20	\$5.00	<0.20	3.00	<0.20	(5.00	<0.20	\$3.00	<0.20	\$3.00	<0.20	\$3.00	<0.20
Indice Hydrocarbures (C10-C40)	mg/l	20%	0,03	<0.03		<0.03		<0.03		<0.03		< 0.03		< 0.03		< 0.03		< 0.03		<0.03		0,039
HCT (nC10 - nC16) (Calcul)	mg/l		0,008	<0.008		<0.008		< 0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008
HCT (>nC16 - nC22) (Calcul)	mg/l		0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008
HCT (>nC22 - nC30) (Calcul)	mg/l		0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		0,012
HCI (>nC30 - nC40) (Calcul)	mg/I	26%	0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		0,015
Acénaphthylène	µg/I	33%	0.01	<0.01		<0.01		<0.01		<0.07		<0.04		<0.01		<0.01		<0.01		<0.02		<0.02
Acénaphtène	μg/I	38%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Fluorène	μg/I	41%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Anthracène	µg/I	44%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Fluoranthène	µg/I	42%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		0,01
Pyrène	µg/I	41%	0,01	< 0.01		<0.01		< 0.01		<0.01		< 0.01		<0.01		<0.01		< 0.01		<0.01		0,01
Benzo-(a)-anthracene	µg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Benzo(b)fluoranthène	μg/1 11σ/1	34%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		0.01
Benzo(k)fluoranthène	μg/I	28%	0,01	<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01		<0.01		< 0.01
Benzo(a)pyrène	μg/I	50%	0,008	< 0.0075		<0.0075		<0.0075		<0.0075		<0.0075		< 0.0075		<0.0075		< 0.0075		< 0.0075		0,0111
Dibenzo(a,h)anthracène	µg/I	34%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Indeno (1,2,3-cd) Pyrène	μg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		0,01
Phénanthrène	μg/I	36%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Benzo(ghi)Perylène	μg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCB 28	μg/l	35%	0.01	0.05 <x<0.1 8<="" th=""><th>0.</th><th><0.01</th><th></th><th>0.00<x<0.208< th=""><th></th><th>0.07<x<0.218 <0.01</x<0.218 </th><th>0.0</th><th><0.01</th><th></th><th>0.03<x<0.198< th=""><th></th><th>0.05<x<0.1 8<="" th=""><th></th><th>0.05<x<0.178< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<></th></x<0.178<></th></x<0.1></th></x<0.198<></th></x<0.208<></th></x<0.1>	0.	<0.01		0.00 <x<0.208< th=""><th></th><th>0.07<x<0.218 <0.01</x<0.218 </th><th>0.0</th><th><0.01</th><th></th><th>0.03<x<0.198< th=""><th></th><th>0.05<x<0.1 8<="" th=""><th></th><th>0.05<x<0.178< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<></th></x<0.178<></th></x<0.1></th></x<0.198<></th></x<0.208<>		0.07 <x<0.218 <0.01</x<0.218 	0.0	<0.01		0.03 <x<0.198< th=""><th></th><th>0.05<x<0.1 8<="" th=""><th></th><th>0.05<x<0.178< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<></th></x<0.178<></th></x<0.1></th></x<0.198<>		0.05 <x<0.1 8<="" th=""><th></th><th>0.05<x<0.178< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<></th></x<0.178<></th></x<0.1>		0.05 <x<0.178< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<></th></x<0.178<>		0.02 <x<0.168< th=""><th></th><th>0.071<x<0.1 1<="" th=""></x<0.1></th></x<0.168<>		0.071 <x<0.1 1<="" th=""></x<0.1>
PCB 52	μg/I	55%	0,01	<0.01		<0.01		<0.01	1	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCB 101	μg/I	50%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCB 118	μg/I	35%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCB 138	μg/I	35%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCB 153	µg/l	35%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
PCD 180	μg/1	35%	0,01	<0.01		<0.07		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
SOMINE FCD (/)	1H6/1			<u>\0.07</u>		\U.U /		~0.07	1	\U.U/	1	-0.07	1	NU.U/		~0.07		~0.07	1	~0.07		~0.07

	Référence El	UROFINS :		17E053897-013	17E053897-006	17E053897-014	17E053897-007	17E053897-015	17E056540-001	17E056540-002	17E053342-008	17E053342-017	17E053342-009	17E053342-018	
	Site :			AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1	AV1
	Référence Cl	lient :		PIF-17-ESU-F16	PIF-17-ESU-17	PIF-17-ESU-F17	PIF-17-ESU-18	PIF-17-ESU-F18	PIF-17-ESU-19	PIF-17-ESU-F19	PIF-17-ESU-104	PIF-17-ESU- F104	PIF-17-ESU-105	PIF-17-ESU- F105	PIF-17-ESU-10
Paramètres	Unités	Incertitude	LQ												
pH (terrain)					6,6		6,5		7,4		nm		nm		nm
Conductivité (terrain)	μS/cm				111		93		550		nm		nm		nm
l'emperature (terrain)	°C				13,4 Effortuóo		16,1 Effoctuóo		10 Effoctuóo		nm		nm		nm
pH				-	7.6		3.6		7.2		7.5		7.8		
Température de mesure du pH	°C				15,4		19,9		18		19,4		19,7		
Matières en suspension	mg/l	15%	2		<2.0		<2.0		<2.0		<2.0		<2.0		
Titre Alcalimétrique simple (TA)	°F	5%	2		<2.00		<2.00		<2.00		<2.00		<2.00		
Titre Alcalimétrique complet (TAC)	°F	5%	2		4,6		<2.00		11,8		3,4		5,6		
Annydride carbonique agressit	mg/I			-	2,3		-				2,17		1,49		
Anhydride carbonique ibre	mg/l			-	0.31		-				0.13		0.38		
Nitrates	mg NO3/I	35%	1		1,5		1,67		2,21		<1.00		1,18		
Azote nitrique	mg N-NO3/I	35%	0.2												
	//		0,2		0,34		0,38		0,5		0,22		0,27		
Chlorures	mg/l	30%	1		<1.00		<1.00		1,05		<1.00		<1.00		
Sunates		2070			5,75		10,4		1/5		<3.00		<5.00		
Demande chimique en oxygène (DCO)	mg O2/l	15%	30		<30		<30		<30		<30		<30		
DBO-5	mg O2/I	30%	3		<3		<3		<3		<3		<3		ſ
Carbone Organique par oxydation	mg C/I	10%	0,5	<u> </u>	<0.5		<0.5		<0.5		<0.5		<0.5		
Cyanures totaux	µg/l	40%	10	-0.05	<10	-0.05	<10	-0.05	<10	20.05	<10	-0.05	<10	-0.05	
Calcium (Ca) soluble	mg/l	30%	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 101	<0.05	<0.05	<0.05	<0.05	<0.05	+
Fer (Fe)	mg/l	20%	0,01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	0.02	
Magnésium dissous	mg/l	30%	0,01		1,65		1,03		3,63		2,43		5,32	-,	1
Phosphore	mg P/I	30%	0,005	<0.005	0,006	0,006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0,006	
Potassium (K) soluble	mg/l	40%	0,1		<0.10		<0.10		0,44		<0.10		<0.10		
Silicium	mg/l	16%	0,02	1,62	1,33	1,33	1,32	1,4	2,74	3,03	1	1,05	0,82	1,69	
Sodium soluble	mg/I	35%	0,05	0.115	0,61	0.026	0,65	0.025	2,32	0.111	0,52	0.014	0,43	0.01	
Antimoine (Sb)	ug/l	30%	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Argent (Ag)	μg/l	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Arsenic (As)	μg/I	20%	0,2	0,25	1,9	1,76	1,76	1,95	0,67	<0.20	0,58	0,27	0,46	<0.20	
Baryum (Ba)	μg/I	15%	0,2	2,58	1,68	1,84	1,41	1,62	3,99	4,09	0,78	0,55	0,44	<0.20	
Cadmium (Cd)	µg/l	20%	0,2	<0.20	< 0.20	< 0.20	<0.20	<0.20	0,52	0,51	<0.20	<0.20	< 0.20	< 0.20	
Construction (Cr)	μg/I	30%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cuivre (Cu)	ug/l	20%	0,2	<0.50	<0.50	<0.20	<0.50	<0.50	16.5	12.2	<0.50	<0.50	<0.50	<0.50	
Etain (Sn)	μg/l	30%	1	<1.00	<1.00	1,6	<1.00	6,9	12,7	<1.00	<1.00	<1.00	<1.00	<1.00	
Manganèse (Mn)	μg/I	25%	0,5	<0.50	0,85	<0.50	0,84	<0.50	66,3	63,4	2,37	<0.50	0,66	3,59	
Molybdène (Mo)	μg/I	20%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Nickel (Ni)	µg/l	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	7,8	7,6	<2.00	<2.00	<2.00	<2.00	
Plomb (PB)	μg/I	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	
Tungstène	ug/l	2.370	5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	
Vanadium (V)	μg/l	35%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Zinc (Zn)	μg/I		5	<5.00	7,3	<5.00	7,6	20,7	89	83,2	<5.00	<5.00	17	<5.00	
Mercure (Hg)	µg/l	30%	0,2		<0.20		<0.20				<0.20		<0.20		
Indice Hydrocarbures (C10-C40)	mg/l	20%	0,03		< 0.03		< 0.03		< 0.03		< 0.03		< 0.03		
HCT (hC10 - hC16) (Calcul)	mg/I		0,008	-	<0.008		<0.008		<0.008		<0.008		<0.008		
HCT (>nC22 - nC30) (Calcul)	mg/l		0,008		<0.008		<0.008		<0.008		<0.008		<0.008		
HCT (>nC30 - nC40) (Calcul)	mg/l		0,008		<0.008		<0.008		<0.008		<0.008		< 0.008		
Naphtalène	µg/l	36%	0,01		0,02		0,02		0,02		<0.01		0,04		
Acénaphthylène	μg/l	33%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Acènaphtène	µg/l	38%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Anthracène	μg/1 μσ/1	41%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Fluoranthène	ug/l	42%	0.01		<0.01		<0.01		<0.01		<0.01		<0.01		
Pyrène	μg/l	41%	0,01		<0.01		<0.01		< 0.01		<0.01		<0.01		
Benzo-(a)-anthracène	μg/l	33%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Chrysène	μg/I	33%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Benzo(b)fluoranthène	μg/l	34%	0,01		<0.01		<0.01		< 0.01		<0.01		< 0.01		
Benzo(k)fluoranthene	μg/l	28%	0,01		<0.01		<0.01		< 0.01		<0.01		< 0.01		
Dibenzo(a)pyrene	μg/1 μg/1	34%	0,008		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		
Indeno (1,2,3-cd) Pyrène	μg/l	33%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Phénanthrène	μg/I	36%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Benzo(ghi)Pérylène	µg/I	33%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
Somme des HAP	μg/I				0.02 <x<0.168< td=""><td></td><td>0.02<x<0.168< td=""><td></td><td>0.02<x<0.168< td=""><td></td><td><0.16</td><td></td><td>0.04<x<0.188< td=""><td></td><td></td></x<0.188<></td></x<0.168<></td></x<0.168<></td></x<0.168<>		0.02 <x<0.168< td=""><td></td><td>0.02<x<0.168< td=""><td></td><td><0.16</td><td></td><td>0.04<x<0.188< td=""><td></td><td></td></x<0.188<></td></x<0.168<></td></x<0.168<>		0.02 <x<0.168< td=""><td></td><td><0.16</td><td></td><td>0.04<x<0.188< td=""><td></td><td></td></x<0.188<></td></x<0.168<>		<0.16		0.04 <x<0.188< td=""><td></td><td></td></x<0.188<>		
PCB 28	μg/l	35%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
PCB 52	μg/i	55%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
PCB 118	μg/l	35%	0,01		<0.01		<0.01		<0.01		<0.01		<0.01		
PCB 138	μg/l	35%	0,01		<0.01		<0.01		<0.01	1	<0.01		<0.01		1
PCB 153	μg/I	35%	0,01		<0.01		<0.01		<0.01		< 0.01		<0.01		
PCB 180	μg/l	35%	0,01		<0.01		<0.01		<0.01		<0.01	<u> </u>	<0.01		
SOMME PCB (7)	µg/l				<0.07		<0.07		<0.07	1	< 0.07	1	<0.07		1

	17E053897-008
<i>c</i>	PIF-17-ESU-
0	F106
	Effectuée
_	8,3
	<2.0
	<2.00
	11,2
	0
-	1,14
	1,38
_	0,31
	<5.00
	<30
	<3
	~0.5
	<0.05
	35,3
_	0,01
	< 0.005
	0,1
	1,54
_	0,29
_	0,057
	<0.50
	0,46
_	2,61
_	<0.20
	<0.20
	<0.50
	<1.00
_	2,86
	<2.00
	<0.50
	<2.00
_	<5.00
	<5.00
	1
_	

	Référence E	UROFINS :		17E053342-003	17E053342-012	17E053342-004	17E053342-013	17E053342-00	5 17E053342-01	4 17E053897-	002 17E053897-010	0 17E053897-003	3 17E053897-011	17E053897-004	17E053897-012	17E058935-01	17E058935-020	17E058935-01	17E058935-021	17E058935-01	17E058935-022	17E058935-01	17E058935-023	17E058935-01	17E058935-024
	Site :	liont		AV2	AV2	AV2	AV2	AV2	AV2					AV2	AV2	AV2	AV2	AV2	AV2	AV2	AV2	AV2	AV2	AV2	AV2
Paramètres	Unités	Incertitud	e LO	PIP-17-E30-09	PIF-17-E30-F09	PIF-17-E30-10	PIF-17-E30-F10	PIF-17-E30-11	PIF-17-E30-F11	PIF-17-E30	15 PIP-17-E30-F13	PIF-17-E30-14	PIF-17-E30-F14	PIF-17-E30-13	PIF-17-E30-F15	PIF-17-E50-20	PIF-17-E30-F20	PIF-17-E30-21	PIF-17-E30-F21	PIF-17-E30-22	PIF-17-E30-F22	PIF-17-E30-23	PIF-17-E30-F23	PIF-17-E30-24	PIF-17-E30-F24
pH (terrain)	United	meertraa	c = q	6.9		8.3		8.07		8.2		8.1		7.95		8.1		8.14		8.13		8.28		8.18	
Conductivité (terrain)	μS/cm			122		234		126		202		131,8		132		192		157		170		161		163	
Température (terrain)	°C			16		19,5		16,5		16,2		13,9		13		12,3		13,2		13,2		12		13,2	
Filtration 0.45 µm				Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée		Effectuée	
рН	_		_	7,9		8,2		7,7		8,1		7,7		7,8		8		8		8,1		8,1		8,1	
Température de mesure du pH	°C		-	19,6		19,5		19,7		19,9		15,2		16,3		19,9		20,1		20,2		20,2		20,1	r
Matieres en suspension	mg/l	15%	2	<2.0		2,1		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0	
Titre Alcalimétrique simple (TA)	°F	5%	2	<2.00 E 2		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00		<2.00	
Anhydride carbonique agressif	mg/l	576	2	0.95		0		1.8		0		2 13		5, 5 1 54		0,0		7,7		0,2		0,2		6,5	
Anhydride carbonique libre	mg/l			1.37		1.74		2.38		1.68		2.61		2.07											
Anhydride carbonique équilibré	mg/l			0,42		1,74		0,58		1,68		0,48		0,53											
Nitrates	mg NO3/I	35%	1	1,4		2,02		1,23		1,67		1,94		2,1		1,01		1,03		<1.00		<1.00		1,34	
Azote nitrique	mg N-NO3/	1 35%	0,2	0,32		0,46		0,28		0,38		0,44		0,47		0,23		0,23		0,22		0,21		0,3	
Chlorures	mg/l	30%	1	<1.00		<1.00		1,05		1,09		<1.00		<1.00		1,02		1,32		1,43		<1.00		<1.00	
Sulfates	mg/l	20%	5	8,39		<5.00		8,57		<5.00		9,45		9,03		11,9		<5.00		7,23		<5.00		6,45	
Demande chimique en oxygène (DCO) mg O2/l	15%	30	<30		<30		<30		<30		<30		<30		<30		<30		<30		<30		<30	
DBO-5	mg 02/1	30%	3	<3		3		<3		<3		<3		<3		<3		<3		<3		<3		<3	
		10%	10	<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		0,00		0,63		<0.5		<0.5	i
Aluminium (Al)	mg/l	30%	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.05
Calcium (Ca) soluble	mg/l	30%	1	20,8		44,5		22,3		34,3		20,1		21,8		28,7		21		24,8		25,9		23,3	
Fer (Fe)	mg/l	20%	0,01	<0.01	<0.01	0,02	<0.01	<0.01	<0.01	0,02	<0.01	< 0.01	<0.01	<0.01	< 0.01	0,03	< 0.01	0,02	< 0.01	0,02	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Magnésium dissous	mg/l	30%	0,01	1,66		2,15		1,68		1,32		1,49		1,71		1,89		2,03		2,1		0,86		1,62	
Phosphore	mg P/I	30%	0,005	<0.005	<0.005	0,009	<0.005	<0.005	<0.005	<0.005	<0.005	0,006	0,007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Potassium (K) soluble	mg/l	40%	0,1	<0.10		0,11		<0.10	4.00	<0.10		0,14	1.05	<0.10		0,17		0,26	4.5-	0,24		0,14	4.67	0,19	
Silicium	mg/l	16%	0,02	1,32	1,4	1,52	1,51	1,38	1,32	1,41	1,47	1,36	1,36	1,36	1,4	1,6	1,61	1,52	1,55	1,52	1,59	1,22	1,33	1,45	1,44
Strontium (Sr)	mg/l	35%	0,05	0,65	0.036	0,62	0.068	0,69	0.027	0,32	0.079	0,56	0.046	0,62	0.048	0,56	0.081	0,6	0.063	0,62	0.069	0,41	0.053	0,55	0.067
Antimoine (Sb)	ug/l	30%	0.2	<0.20	<0.20	0.3	0,008	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.24	0.24	<0.20	<0.20
Argent (Ag)	μg/l	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Arsenic (As)	μg/l	20%	0,2	1,76	1,24	0,42	<0.20	1,83	1,24	0,36	0,31	1,4	1,49	1,34	1,38	0,96	0,85	0,54	0,54	0,65	0,62	0,82	0,78	0,66	0,64
Baryum (Ba)	μg/I	15%	0,2	1,61	1,41	1,63	1,46	1,63	1,42	0,73	0,8	1,86	1,98	1,68	1,87	2,14	2,19	2,16	2,27	2,32	2,32	1,03	1,07	1,92	2,06
Cadmium (Cd)	μg/I	20%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrome (Cr)	μg/I	30%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cobalt (Co)	μg/l	15%	0,2	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cuivre (Cu)	μg/1	20%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0,67	<0.50	<0.50	<0.50	<0.50
Manganèse (Mn)	μg/1	25%	0.5	1 33	<1.00	7.43	<1.00	2.45	<0.50	4 52	<0.50	1 16	<1.00	<1.00	1,1	2 14	0.68	3.89	<1.00 0.67	3.99	0.94	<1.00	1,3	2.64	<1.00
Molybdène (Mo)	μg/l	20%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.23	<0.20	<0.20	<0.20	<0.20	0.31	0.36	<0.20	0,33	0.27	0.23	0.24	0.24	0.21	0,74
Nickel (Ni)	μg/l	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Plomb (Pb)	μg/I	25%	0,5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1,14
Titane (Ti)	μg/I	25%	2	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Tungstène	μg/l		5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Vanadium (V)	μg/I	35%	0,2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Zinc (Zn)	μg/1	20%	5	<5.00	<5.00	5,/	<5.00	5,3	<5.00	5,6	9,7	23,4	1/,/	14	6,9	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Indice Hydrocarbures (C10-C40)	mg/l	20%	0,2	<0.20		<0.20		<0.20		<0.20		<0.20		<0.20		<0.20		<0.20		<0.20		<0.20		<0.20	
HCT (nC10 - nC16) (Calcul)	mg/l	20/0	0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		< 0.008		< 0.008	
HCT (>nC16 - nC22) (Calcul)	mg/l		0,008	<0.008		<0.008		<0.008		< 0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008	
HCT (>nC22 - nC30) (Calcul)	mg/l		0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008	
HCT (>nC30 - nC40) (Calcul)	mg/l		0,008	<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008		<0.008	
Naphtalène	μg/l	36%	0,01	0,02		0,02		0,03		0,03		0,01		0,02		<0.01		<0.01		<0.01		<0.01		0,01	
Acenaphthylene	μg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01	
Fluorène	μg/1	38%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01	+	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Anthracène	μg/I	44%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01	
Fluoranthène	μg/l	42%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Pyrène	μg/l	41%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Benzo-(a)-anthracène	μg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Chrysène	μg/I	33%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Benzo(b)fluoranthène	μg/I	34%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Benzo(k)fluoranthène	μg/l	28%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		< 0.01		< 0.01		<0.01		<0.01		< 0.01	r
Benzo(a)pyrène	μg/l	50%	0,0075	<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075		<0.0075	
Indeno (1.2.2.cd) Purène	μg/1	34%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Phénanthrène	μg/1	36%	0,01	<0.01		0.01		<0.01		0.01		0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
Benzo(ghi)Pérylène	μg/l	33%	0,01	<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
	//										-														
Somme des HAP	µg/I			U.02 <x<0.168< th=""><th></th><th>U.03<x<0.168< th=""><th></th><th>U.U3<x<0.178< th=""><th></th><th>0.05<x<0.18< th=""><th>58</th><th>U.02<x<0.157< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<></th></x<0.157<></th></x<0.18<></th></x<0.178<></th></x<0.168<></th></x<0.168<>		U.03 <x<0.168< th=""><th></th><th>U.U3<x<0.178< th=""><th></th><th>0.05<x<0.18< th=""><th>58</th><th>U.02<x<0.157< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<></th></x<0.157<></th></x<0.18<></th></x<0.178<></th></x<0.168<>		U.U3 <x<0.178< th=""><th></th><th>0.05<x<0.18< th=""><th>58</th><th>U.02<x<0.157< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<></th></x<0.157<></th></x<0.18<></th></x<0.178<>		0.05 <x<0.18< th=""><th>58</th><th>U.02<x<0.157< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<></th></x<0.157<></th></x<0.18<>	58	U.02 <x<0.157< th=""><th></th><th>0.02<x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<></th></x<0.157<>		0.02 <x<0.168< th=""><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th><0.16</th><th></th><th>U.01<x<0.157< th=""><th>I</th></x<0.157<></th></x<0.168<>		<0.16		<0.16		<0.16		<0.16		U.01 <x<0.157< th=""><th>I</th></x<0.157<>	I
PCB 28	μg/I	35%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
PCB 52	μg/l	55%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01		<0.01	
PCB 101	µg/l	50%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		< 0.01		<0.01		<0.01		<0.01	i
PCB 118	μg/I	35%	0,01	<0.01		<0.01		<0.01		<0.01		<0.01	+	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
PCB 153	ug/l	35%	0.01	<0.01		<0.01		<0.01	-	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
PCB 180	μg/l	35%	0,01	<0.01		<0.01		<0.01	1	<0.01		<0.01	1	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	
SOMME PCB (7)	μg/l			<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07		<0.07	

<u>Annexe 7</u>

Résultats analytiques des prélèvements de sédiments (SED01 à SED12)

	Référence	Client :		PIF-17-SED-01	PIF-17-SED-02	PIF-17-SED-03-0-2	PIF-17-SED-07-0-3	PIF-17-SED-08	PIF-17-SED-09
Paramètres	Unités	Incertitude	LQ						
Matière sèche	% P.B.	5%***	0,1	72,5***	75,9***	50,4***	40,1	73,9	30,2
Refus pondéral à 2 mm	% P.B.		1	7,96	11,5	32,6	14,1	17,1	2,59
Préparation physico-chimique (séchage à 40°C)				_	-	_	-	-	
Granulo - Tranche 0.02µm à 2µm	%			0.91	1 48	0.74	24	1 35	1 69
Granulo - Tranche 2um à 20um	%			9.92	15.57	9.08	26.17	15.69	19.04
Granulo - Tranche 20um à 63um	96			11.06	10,07	9.51	10.7	6.07	20.26
Granulo - Tranche 20µm à 300µm	0/			11,00	10,42	5,51	11.67	0,92	23,20
Granulo - Tranche Sourn à 2000um	70 0/			11,09	11,11	9,54	11,67	3,80	34,68
	70	400/	0.5	00,37	61,42	/1,14	40,56	/2,1/	15,14
Cyanures totaux	mg/kg IVIS	40%	0,5	<0.5	<0.5	<0.5			1
pH extrait a l'eau									h
Temperature de mesure du pH	-C								
Carbone Organique Total par Combustion	mg/kg MS	15%	1000	26100	22300	95600	35200	29100	68200
Coefficient de variation (CV)								54,5	
Minéralisation Eau Régale - Bloc chauffant après p				-	-	-	-	-	-
Aluminium (Al)	mg/kg MS	23%	5	15400	19400	14400	12800	18100	14400
Antimoine (Sb)	mg/kg MS	35%	1	3,29	3,24	3,15	2,67	4,28	<1.00
Argent (Ag)	mg/kg MS		5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Arsenic (As)	mg/kg MS	40%	1	346	51,6	24	19,5	81,2	65,1
Baryum (Ba)	mg/kg MS	35%	1	39,2	28,9	33,4	17,3	30,6	28,6
Cadmium (Cd)	mg/kg MS	40%	0,4	1,57	0,99	0,83	<0.40	0,42	0,59
Calcium	mg/kg MS		50	8010	56100	36300	23800	7790	9080
Chrome (Cr)	mg/kg MS	35%	5	14,9	21,1	17,2	14,2	22,3	17,3
Cobalt (Co)	mg/kg MS		1	27,3	19,8	16,7	21,3	18,9	17,8
Cuivre (Cu)	mg/kg MS	45%	5	395	84,3	22,6	21,9	24	68,6
Etain (Sn)	mg/kg MS	30%	5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Fer (Fe)	mg/kg MS	25%	5	49300	49300	34400	38100	49200	38800
Magnésium (Mg)	mg/kg MS		5	6800	28600	10700	6240	9990	8390
Manganèse (Mn)	mg/kg MS	30%	1	890	797	762	671	526	506
Molybdène (Mo)	mg/kg MS	40%	1	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Nickel (Ni)	mg/kg MS	40%	1	29.1	33.2	34.9	39	36	32.8
Plomb (Pb)	mg/kg MS	35%	5	28.7	223	44.6	23.6	22.7	31.4
Potassium	mg/kg MS		20	947	792	576	28,0	330	184
Silicium	ma/ka MS	:	10	441	909	472	657	942	1210
Sodium (No)	mg/kg MS		20	202	308	423	42.6	842 90 F	1210
Titere (Ti)	mg/kg MG	250/	20	202	522	96,7	42,0	69,5	90
Trane (1)	mg/kg IVIS	25%	5	290	129	20,6	9,8	162	82
Tungstene	mg/kg IVIS	450/	10	2280	1/4	<10.0	<10.0	<10.0	125
vanadium (v)	mg/kg IVIS	15%	1	16,9	20,6	16,9	17,3	20,3	17,4
	mg/kg IVIS	50%	5	193	347	324	229	109	229
Mercure (Hg)	mg/kg MS	20%	0,1	0,13	<0.10	<0.10	0,88	<0.10	
Indice Hydrocarbures (C10-C40)	mg/kg MS	49%	15	49,6	26,3	47,9	163	<15.0	90,4
HCT (nC10 - nC16) (Calcul)	mg/kg MS			0,4	0,31	1,17	1,03	-	6,53
HCT (>nC16 - nC22) (Calcul)	mg/kg MS			10,7	3,46	2,69	8,85	-	1,87
HCT (>nC22 - nC30) (Calcul)	mg/kg MS			16,7	6,97	10,5	37,6	-	38,1
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			21,8	15,5	33,5	115	-	43,9
Naphtalène	mg/kg MS	32%	####	0,0062	0,0096	0,011	0,031	0,025	-
Acénaphthylène	mg/kg MS	30%	####	0,003	0,0085	0,0058	0,0029	0,0026	-
Acénaphtène	mg/kg MS	25%	####	0,016	0,017	0,077	0,0048	0,0032	
Fluorène	mg/kg MS	32%	####	0,0064	0,018	0,064	0,0052	0,0045	
Phénanthrène	mg/kg MS	31%	#####	0,0092	0,032	0,049	0,0091	0,013	H
Anthracène	mg/kg MS	28%	####	<0.0025	0,01	0,016	<0.0027	<0.0023	ŀ
Fluoranthène	mg/kg MS	34%	####	0,013	0,036	0,027	0,0078	0,019	
Pyrène	mg/kg MS	34%	####	0,012	0,028	0,024	0,0055	0,014	
Benzo-(a)-anthracène	mg/kg MS	29%	####	0,0045	0,016	0,0052	0,0029	0,0073	ļ
Chrysène	mg/kg MS	33%	####	0,0042	0,023	0,0049	0,0037	0,0079	I
Benzo(b)fluoranthène	mg/kg MS	36%	####	0,0086	0,02	0,0074	0,0045	0,011	l
Benzo(k)fluoranthène	mg/kg MS	41%	####	<0.0025	0,011	<0.0027	<0.0027	0,0038	1
Benzo(a)pyrène	mg/kg MS	37%	####	0,0053	0,019	0,0055	0,0027	0,0089	1
Dibenzo(a,h)anthracène	mg/kg MS	43%	#####	<0.0025	<0.0027	<0.0027	<0.0027	<0.0023	
Benzo(ghi)Pérylène	mg/kg MS	43%	####	0,004	0,011	0,0035	< 0.0027	0,0046	
Indeno (1,2,3-cd) Pyrène	mg/kg MS	43%	#####	0,0045	0,011	0,0051	0,0027	0,0047	
Somme des HAP	mg/kg MS			0,097	0,27	0,31	0,083	0,13	
PCB 28	mg/kg MS	32%	#####	<0.001	< 0.001	<0.001	<0.001	<0.001	0,0049
PCB 52	mg/kg MS	30%	#####	<0.001	< 0.001	<0.001	<0.001	<0.001	0,0016
PCB 101	mg/kg MS	39%	#####	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
PCB 118	mg/kg MS	37%	#####	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
PCB 138	mg/kg MS	37%	#####	0.0035	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 153	mg/kg MS	32%	#####	0.0029	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 180	mg/kg MS	3/1%	шши	0,0023	<0.001	<0.001	<0.001	<0.001	<0.001
SOMME PCB (7)	mg/kg MAC	3470		0,0035	<0.001	<0.001	<0.001	<0.001	0.001
	1		1	0,0037	~0.001	~0.001	~0.001	~0.001	0,0000

	Référence Cli	ient :		PIF-17-SED-04	PIF-17-SED-05	PIF-17-SED-06-0-3	PIF-17-SED-10-0-1	PIF-17-SED-11-0-1	PIF-17-SED-12
Paramètres	Unités	Incertitude	LO						
Matière sèche	% P.B.	5% ***	0,1	73,6***	68,2	76,3	77,2	90,6	81,4
Refus pondéral à 2 mm	% P.B.		1	3,1	5,67	4,68	3,38	1,63	2,5
Préparation physico-chimique (séchage à 40°C)				-	-	-	-	-	-
Granulo - Tranche 0.02μm à 2μm	%			0,9	0,96	0,63	1,65	1,17	3,83
Granulo - Tranche 2µm à 20µm	%			11,42	11,17	8,07	15,45	12	33,82
Granulo - Tranche 20µm à 63µm	%			4,92	5,41	4,43	8,3	7,2	19,86
Granulo - Tranche 63µm a 200µm	%			3,11	3,33	5,5	19,58	17,5	13,42
	mg/kg MS	40%	0.5	/9,03	79,12	01,57	55,05	02,14	29,00
pH extrait à l'eau	1116/115	1070	0,0						
Température de mesure du pH	°C								
Carbone Organique Total par Combustion	mg/kg MS	15%	1000	2790	11300	4090	3660	3660	7020
Coefficient de variation (CV)									19,3
Minéralisation Eau Régale - Bloc chauffant après p				-	-	-	-	-	-
Aluminium (Al)	mg/kg MS	23%	5	19000	17700	16400	14000	14100	16000
Antimoine (Sb)	mg/kg MS	35%	1	2,88	5,57	3,64	7,91	5,63	5,65
Argent (Ag)	mg/kg IVIS	40%	5	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Barvum (Ba)	mg/kg MS	40%	1	40,7	21.7	20.9	40,0	47,8	20.1
Cadmium (Cd)	mg/kg MS	40%	0.4	<0.40	<0.40	0.72	0.55	0.87	0.99
Calcium	mg/kg MS		50	14400	19400	25000	35300	41400	38600
Chrome (Cr)	mg/kg MS	35%	5	22	20,1	20,2	18,1	19,2	20,6
Cobalt (Co)	mg/kg MS		1	13,7	16,2	19,2	19,5	22,4	21,9
Cuivre (Cu)	mg/kg MS	45%	5	19,9	35	41,4	36	45	41,1
Etain (Sn)	mg/kg MS	30%	5	<5.00	<5.00	<5.00	<5.00	9,15	<5.00
Fer (Fe)	mg/kg MS	25%	5	43500	39000	47500	46500	46300	42600
Magnesium (Mg)	mg/kg MS	20%	5	10500	9560	10000	13700	14100	13200
Molybdane (Mo)	mg/kg MS	30%	1	482	<1.00	405	439	458	2 2/
Nickel (Ni)	mg/kg MS	40%	1	31.8	32	36.2	48.4	44 5	49 7
Plomb (Pb)	mg/kg MS	35%	5	16,2	23,6	22,5	25,4	29,9	23,9
Potassium	mg/kg MS		20	758	789	613	395	369	490
Silicium	mg/kg MS		10	981	696	834	595	1290	1320
Sodium (Na)	mg/kg MS		20	125	166	182	66,6	89,8	81,2
Titane (Ti)	mg/kg MS	25%	5	146	106	121	143	166	146
Tungstène	mg/kg MS		10	<10.0	26,5	103	10,6	<10.0	<10.0
Vanadium (V)	mg/kg MS	15%	1	20,2	19,1	19,5	22,7	27,2	27,5
Zinc (Zii) Mercure (Hg)	mg/kg MS	20%	5 0 1	139		157 <0.10	194	188	209
Indice Hydrocarbures (C10-C40)	mg/kg MS	49%	15	15.8	25.3	16.1	19.1	17.9	<15.0
HCT (nC10 - nC16) (Calcul)	mg/kg MS		-	4,35	2,87	2,41	7,95	1,59	-
HCT (>nC16 - nC22) (Calcul)	mg/kg MS			2,27	4,63	3,06	3,13	2,83	-
HCT (>nC22 - nC30) (Calcul)	mg/kg MS			3,37	6,7	4,73	3,45	5,97	-
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			5,81	11,1	5,95	4,56	7,48	-
Naphtalène	mg/kg MS	32%	0,002	0,0076	0,026	0,019			
Acenaphthylene	mg/kg MS	30%	0,002	0,0053	0,0038	0,0026			
Fluorène	mg/kg MS	25%	0,002	<0.0031	0,006	<0.0028			
Phénanthrène	mg/kg MS	31%	0.002	0.0035	0.041	0.0045			
Anthracène	mg/kg MS	28%	0,002	< 0.0024	0,0088	< 0.0026			
Fluoranthène	mg/kg MS	34%	0,002	0,004	0,054	0,0062			
Pyrène	mg/kg MS	34%	0,002	0,0038	0,04	0,0059			
Benzo-(a)-anthracène	mg/kg MS	29%	0,002	<0.0024	0,018	0,0026			
Chrysène	mg/kg MS	33%	0,002	0,006	0,02	0,0044			[
Benzo(b)fluoranthène	mg/kg MS	36%	0,002	0,005	0,022	0,005			
Benzo(k)fluorantnene	mg/kg MS	41%	0,002	<0.0024	0,01	0,005			
Dibenzo(a)pyrene	mg/kg MS	37%	0,002	<0.0037	0,017	0,0038			
Benzo(ghi)Pérylène	mg/kg MS	43%	0,002	<0.0024	0,0086	0,0095			. <u></u>
Indeno (1,2,3-cd) Pyrène	mg/kg MS	43%	0,002	< 0.0024	0,013	0,0099			
Somme des HAP	mg/kg MS			0,042	0,3	0,085			
PCB 28	mg/kg MS	32%	0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 52	mg/kg MS	30%	0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 101	mg/kg MS	39%	0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 118	mg/kg MS	37%	0,001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
PCB 153	mg/kg MS	37%	0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB 180	mg/kg MS	32%	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
SOMME PCB (7)	mg/kg MS	5.70	2,501	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001